亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于SGA-RF算法的農(nóng)業(yè)土壤鎘濃度反演研究
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金重點(diǎn)項(xiàng)目(41731280)和國(guó)家自然科學(xué)基金項(xiàng)目(11701310)


Inversion of Cadmium Content in Agriculture Soil Based on SGA-RF Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    在農(nóng)業(yè)土壤重金屬高光譜檢測(cè)領(lǐng)域,土壤鎘元素近紅外光譜的高維、高冗余特性會(huì)嚴(yán)重影響高光譜反演模型的準(zhǔn)確性和穩(wěn)定性。為了解決上述問(wèn)題,本文提出一種基于斯皮爾曼相關(guān)分析的遺傳隨機(jī)森林特征選擇算法(SGA-RF)。該算法首先對(duì)初始特征集合使用基于斯皮爾曼相關(guān)分析的特征預(yù)選方法,篩選出大量冗余波段,保留與鎘元素相關(guān)性最強(qiáng)的特征波段;其次在特征精選階段,提出一種基于隨機(jī)森林的適應(yīng)度函數(shù)評(píng)估方法,該方法充分結(jié)合遺傳算法強(qiáng)大的全局搜索能力和隨機(jī)森林算法較高的反演能力,提高了對(duì)相似個(gè)體的區(qū)分能力,獲得具有最小冗余度和最大區(qū)分性的最優(yōu)特征波段子集。為了驗(yàn)證所提算法的有效性,選取青島市大沽河流域具有代表性的124個(gè)土壤樣品為實(shí)驗(yàn)對(duì)象,利用SGA-RF算法將原始2051個(gè)波段優(yōu)選至37個(gè)最具代表性的敏感波段,并與現(xiàn)有特征選擇算法所建模型進(jìn)行對(duì)比分析。試驗(yàn)結(jié)果表明,該特征選擇方法與隨機(jī)森林回歸模型相結(jié)合具有較低的預(yù)測(cè)均方根誤差(0.0601),較高的相關(guān)系數(shù)(0.9502)和預(yù)測(cè)相對(duì)分析誤差(2.03)。作為應(yīng)用可見(jiàn)/近紅外光譜技術(shù)定量反演農(nóng)業(yè)土壤鎘濃度的重要步驟,SGA-RF算法以較少的敏感波段達(dá)到了較高的反演效果,可為監(jiān)測(cè)土壤重金屬污染情況提供一定的理論依據(jù)。

    Abstract:

    In the field of hyperspectral detection on heavy metal pollution levels in agricultural soils, the accuracy and stability of hyperspectral inversion model for soil cadmium were seriously affected by the high dimensional and high redundancy characteristics in visible/NIR spectra. In order to solve the above problems, Spearman’s rank correlation analysis-based genetic algorithm by using random forest (SGA-RF) was proposed to select the characteristic wavelength from hyperspectral data. On the first-layer of feature selection stage, Spearman correlation analysis-based feature selection method was applied to remove redundancy between all spectra features and retain the characteristic wavelength which was the most relevant to the cadmium content. On the second-layer of feature selection stage, a new fitness function based on random forest was proposed, which perfectly combined the strong global search ability of genetic algorithm and the high inversion ability of random forest. With the proposed fitness function to evaluate the viability of individuals, the distinguishing ability between similar individuals was improved and a subset of optimal spectra feature set with minimum redundancy and maximum differentiation were obtained. In order to verify the validity of the proposed algorithm, totally 124 representative soil samples collected from the Dagu River Basin were chosen as samples. The optimal feature subset which contained 37 sensitive wavelengths was chosen and used to build soil available cadmium content inversion model, and its performance was compared with that of current feature selection methods. Results indicated that the minimum numbers of wavelength features was selected and meanwhile the prediction performance had lower predictive root mean square error of 0.0601, higher correlation coefficient of 0.9502 and residual predictive deviation of 2.03. As an important step for the quantitative inversion of cadmium concentration by using visible/NIR spectra, the research could provide some theoretical basis for monitoring soil heavy metal pollution.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王軒慧,陳建毅,鄭西來(lái),朱成,王軒力,單春芝.基于SGA-RF算法的農(nóng)業(yè)土壤鎘濃度反演研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(10):261-269. WANG Xuanhui, CHEN Jianyi, ZHENG Xilai, ZHU Cheng, WANG Xuanl, SHAN Chunzhi. Inversion of Cadmium Content in Agriculture Soil Based on SGA-RF Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(10):261-269.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2018-04-12
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2018-10-10
  • 出版日期: