亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于EMD-IGA-SELM的池塘養(yǎng)殖水溫預(yù)測方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(61174034)、中央級(jí)公益性科研院所基本科研業(yè)務(wù)費(fèi)專項(xiàng)(2016HY-ZD1404)和現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系專項(xiàng)(CARS-46)


Water Temperature Prediction in Pond Aquaculture Based on EMD-IGA-SELM Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為了有效指導(dǎo)工廠化水產(chǎn)養(yǎng)殖,提高水產(chǎn)養(yǎng)殖過程中水體溫度預(yù)測的精度和穩(wěn)定性,在分析水體溫度影響因素的基礎(chǔ)上,提出基于經(jīng)驗(yàn)?zāi)B(tài)分解(EMD)、改進(jìn)遺傳算法(IGA)和改進(jìn)極限學(xué)習(xí)機(jī)(SELM)相結(jié)合的水溫預(yù)測模型(EMD-IGA-SELM)。首先,通過綜合天氣指數(shù)的計(jì)算完成異常和缺失數(shù)據(jù)的校正;利用皮爾森相關(guān)分析計(jì)算各影響因子與水溫之間的相關(guān)度,從而確定預(yù)測模型的輸入輸出量;選擇Softplus函數(shù)代替Sigmoid函數(shù)組成SELM,并引入混沌序列改進(jìn)標(biāo)準(zhǔn)遺傳算法,獲得SELM的最佳初始權(quán)值和閾值;最后,采用EMD方法將原始水溫時(shí)序數(shù)據(jù)進(jìn)行多尺度分解,在各分量中對IGA-SELM訓(xùn)練建模,并疊加求和各分量預(yù)測值,從而完成水溫序列的預(yù)測。將EMD-ELM和GA-BP模型的預(yù)測結(jié)果與EMD-IGA-SELM進(jìn)行對比,結(jié)果表明,EMD-IGA-SELM取得了較好的預(yù)測精度,評(píng)價(jià)指標(biāo)平均絕對誤差、平均絕對百分比誤差和均方根誤差分別為0.1233℃、0.0043和0.1478℃,能夠滿足水產(chǎn)養(yǎng)殖的生產(chǎn)需要,可為池塘水質(zhì)管理和調(diào)控提供決策支持。

    Abstract:

    In order to guide the intensive aquaculture effectively and improve the accuracy and stability of water temperature prediction, based on the analysis of water temperature factors, a prediction model (EMD-IGA-SELM) was proposed with the combination of empirical mode decomposition (EMD), improved genetic algorithm (IGA) and improved extreme learning machine (SELM). Firstly, the outlier and missing data were corrected with the calculation of composite meteorological index. Secondly, the Pearson correlation was utilized to explore the relationships between affecting factors and water temperature, and construct the input and output of prediction model. Then, Softplus function was used as activation function of SELM to replace Sigmoid. The best weight and threshold of SELM were obtained from the IGA, which introduced the chaotic sequence to traditional GA. Finally, EMD algorithm was applied to decompose the original water temperature time series into a series of intrinsic mode function (IMF). IGA-SELM prediction models were trained in each IMF sequence, and the predicted values were calculated by the sum of predicted value in each IMF sequence. The experimental results showed that EMD-IGA-SELM had better prediction accuracy, and the mean absolute error (MAE), mean absolute percentage error (MAPE) and root mean square error (RMSE) of GA-SELM were 0.1233℃, 0.0043 and 0.1478℃, respectively. Research results met the practical needs of the aquaculture and provided decision support for water quality management and control.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

施 珮,袁永明,匡 亮,李光輝,張紅燕.基于EMD-IGA-SELM的池塘養(yǎng)殖水溫預(yù)測方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(11):312-319. SHI Pei, YUAN Yongming, KUANG Liang, LI Guanghui, ZHANG Hongyan. Water Temperature Prediction in Pond Aquaculture Based on EMD-IGA-SELM Neural Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(11):312-319.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2018-04-16
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2018-11-10
  • 出版日期: 2018-11-10