亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于全卷積神經(jīng)網(wǎng)絡(luò)的云杉圖像分割算法
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金項(xiàng)目(2015ZCQ-GX-04)、國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFD0600901)、北京市科技計(jì)劃項(xiàng)目(Z161100000916012)和北京市共建項(xiàng)目


Spruce Image Segmentation Algorithm Based on Fully Convolutional Networks
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    以云杉為研究對(duì)象提出了應(yīng)用全卷積神經(jīng)網(wǎng)絡(luò)(Fully convolutional networks,F(xiàn)CN)分割圖像的算法。利用無人機(jī)采集圖像,標(biāo)注470幅云杉圖像,其中300幅組成訓(xùn)練集,170幅組成測(cè)試集,標(biāo)注90幅樟子松圖像作為附加測(cè)試集。以VGG16為基礎(chǔ)建立云杉分割FCN模型,利用Tensorflow框架實(shí)現(xiàn)和訓(xùn)練網(wǎng)絡(luò),通過共享權(quán)值和逐漸降低的學(xué)習(xí)速率,提高FCN模型的訓(xùn)練性能。選擇像素精度(PA)、均像素精度(MPA)、均交并比(MIoU)和頻權(quán)交并比(FWIoU)4個(gè)語義分割評(píng)價(jià)指標(biāo)評(píng)價(jià)測(cè)試結(jié)果。FCN模型分割云杉圖像,PA和MPA達(dá)到0.86,MIoU達(dá)到0.75,F(xiàn)WIoU達(dá)到0.76,處理速率達(dá)到0.085s/幅,有效地解決了光照變化、云杉個(gè)體差異、地面雜草干擾和植株之間粘連的影響。與HSV顏色空間閾值分割以及K均值聚類分割算法比較,F(xiàn)CN模型的MIoU分別提高0.10和0.38。

    Abstract:

    Existing nursery inventory methods require people hand-counting, which is very labor consuming and not efficient. Using unmanned aerial vehicle (UAV) to facilitate counting the number of nursery-grown plants automatically with high accuracy provides an alternative to inventory management. The segmentation of individual plants in UAV images is the crucial step to achieve the plants counting task, which is challenging because of variations in illumination changes under natural conditions, the size difference between individual plants, the complicated background of the ground weeds and overlapping of adjacent plants. A spruce image segmentation algorithm based on fully convolutional networks (FCN) was proposed. Images were collected by using DIJ PHANTOM 4 in Inner Mongolia, in which 470 labeled spruce images with 300 images as training set, 170 images as test set, and 90 Pinus sylvestris images labeled as additional test set for comparing test results. To design FCN for accurate spruces segmentation, VGG16 was chosen as a basic network with the shared weights and the decreasing learning rate to improve the accuracy under Tensorflow framework. The results on the test set showed that FCN algorithm achieved effective spruces segmentation in spite of illumination changes, the size difference between individuals, the complicated background and the overlapping problem, with pixel accuracy (PA) of 0.86, mean pixel accuracy (MPA) of 0.86, mean intersection over union (MIoU) of 0.75 and frequency weighted intersection over union (FWIoU) of 0.76 at an average speed of 85 millisecond per image. Compared with K-means clustering segmentation algorithm and HSV threshold segmentation algorithm, the MIoU value of FCN algorithm was 0.10 and 0.38 higher, respectively. All of the test results showed that the proposed FCN algorithm provided an effective pipeline for plants segmentation.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

陳鋒軍,王成翰,顧夢(mèng)夢(mèng),趙燕東.基于全卷積神經(jīng)網(wǎng)絡(luò)的云杉圖像分割算法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(12):188-194. CHEN Fengjun, WANG Chenghan, GU Mengmeng, ZHAO Yandong. Spruce Image Segmentation Algorithm Based on Fully Convolutional Networks[J]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(12):188-194.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2018-07-10
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2018-12-10
  • 出版日期: