亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于卷積模型的農(nóng)業(yè)問答語性特征抽取分析
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(61571051)、北京市自然科學(xué)基金項(xiàng)目(4172024)和北京市農(nóng)林科學(xué)院2018年度科研創(chuàng)新平臺建設(shè)項(xiàng)目(PT2018-25)


Analysis of Extraction of Semantic Feature in Agricultural Question and Answer Based on Convolutional Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    互聯(lián)網(wǎng)農(nóng)技推廣社區(qū)每秒增衍問答數(shù)據(jù)近萬組,這些海量數(shù)據(jù)具有隱性的詞性、情感和冗余向量特征,實(shí)現(xiàn)數(shù)據(jù)聚合與數(shù)據(jù)塊消減是該領(lǐng)域的難題。提出了一種基于卷積神經(jīng)網(wǎng)絡(luò)的農(nóng)業(yè)問答情感極性特征抽取分析模型,結(jié)合農(nóng)業(yè)分詞字典,對數(shù)據(jù)集進(jìn)行分詞后使用Skip-gram模型轉(zhuǎn)換為256維的詞向量,利用批規(guī)范后的卷積神經(jīng)網(wǎng)絡(luò)對數(shù)據(jù)集進(jìn)行訓(xùn)練,從而得到用于識別農(nóng)技推廣社區(qū)問答詞性情感相似性的神經(jīng)網(wǎng)絡(luò)模型參數(shù)。試驗(yàn)結(jié)果表明,該方法能夠準(zhǔn)確識別測試樣例集中的冗余隊(duì)列,與其他5種文本分類方法進(jìn)行比較,各項(xiàng)指標(biāo)優(yōu)勢明顯,針對測試集的語性特征抽取準(zhǔn)確率達(dá)到82.7%。

    Abstract:

    Tens of thousands of question and answer data have been increased per second in the internet agricultural technology extension community, these massive data have features of recessive part of speech, emotion and unwanted vectors, and how to implement data aggregation and data block reduction is the difficult problem in this field. An analytical model for the extraction of emotional polarity in agricultural question and answer based on convolutional neural network was proposed, the training set was transformed into a 256-dimensional word vector by using the Skip-gram model after segmenting the dataset with agricultural word segmentation dictionary. The convolution neural network after batch-normalization specification was used to train the dataset, and the neural network model parameters used to identify the part of speech emotional similarities in the agricultural technology promotion community question and answer were obtained. The experimental results showed that the method could accurately identify redundant queues in the test sample set, and by comparing with the other four text classification methods, there were also obvious advantages in each index, the accuracy of the semantic feature extraction for the test set was up to 82.7%.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張明岳,吳華瑞,朱華吉.基于卷積模型的農(nóng)業(yè)問答語性特征抽取分析[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(12):203-210. ZHANG Mingyue, WU Huarui, ZHU Huaji. Analysis of Extraction of Semantic Feature in Agricultural Question and Answer Based on Convolutional Model[J]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(12):203-210.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2018-05-23
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2018-12-10
  • 出版日期: