亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于無(wú)人機(jī)遙感的高潛水位采煤沉陷濕地植被分類(lèi)
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

山東省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016ZDJS11A02)和中央高校基本科研業(yè)務(wù)費(fèi)專(zhuān)項(xiàng)資金項(xiàng)目(ZJUGG201801)


Vegetation Classification by Using UAV Remote Sensing in Coal Mining Subsidence Wetland with High Ground-water Level
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為了掌握采煤沉陷濕地植被的類(lèi)別和空間分布,促進(jìn)礦區(qū)土地利用、管理和修復(fù),以山東省濟(jì)寧市東灘煤礦3304工作面為研究區(qū),以無(wú)人機(jī)多光譜影像為數(shù)據(jù)源,分別采用面向?qū)ο蟮姆诸?lèi)方法和監(jiān)督分類(lèi)方法對(duì)研究區(qū)濕地植被進(jìn)行分類(lèi)?;趦?yōu)選的面向?qū)ο蟪叨确指顓?shù),確定分類(lèi)規(guī)則后構(gòu)建面向?qū)ο蠓诸?lèi)模型,對(duì)濕地植被進(jìn)行分類(lèi),生成植被分布圖。同時(shí),利用野外獲取的322個(gè)采樣點(diǎn)進(jìn)行精度驗(yàn)證。結(jié)果表明:與基于像元的監(jiān)督分類(lèi)方法相比,面向?qū)ο蠓诸?lèi)方法顯著提高了影像分類(lèi)精度。監(jiān)督分類(lèi)方法總體精度為44.3%,Kappa系數(shù)為0.4;面向?qū)ο蠓诸?lèi)方法總體精度達(dá)到84.2%,Kappa系數(shù)為0.8。該研究為采煤沉陷區(qū)濕地調(diào)查與開(kāi)采沉陷影響下地表植被空間分布規(guī)律研究提供了方法與基礎(chǔ)數(shù)據(jù)。

    Abstract:

    After mining in the high ground-water level mining area, the surface subsided and accumulated water. The surface is changed from the farmland ecosystem to the water-land two-phase ecosystem. As the energy fixers and nutrient producers in the wetland ecosystem, wetland vegetation can reflect the changes in the wetland ecological environment. Vegetation classification is the basis for exploring vegetation coverage and monitoring dynamic changes. In order to grasp the type and spatial distribution of vegetation in coal mining subsidence and promote land use, management and restoration in mining area, totally 3304 working face of Dongtan Coal Mine in Jining City, Shandong Province was selected as the study area. The UAV multi-spectral images were taken as data sources, and the object-oriented classification method and supervised classification method were used to classify the wetland in the study area. Based on the optimized object-oriented scale segmentation parameters, the classification rules were determined and then the object-oriented classification model was constructed to classify the wetland vegetation and generate the vegetation distribution map. At the same time, totally 322 sampling points were used to verify the accuracy of the classification results. The results showed that the overall accuracy of the supervised classification method was 44.3%, and the object-oriented classification method was 84.2%. Compared with the supervised classification method which based on pixels, the object-oriented classification method improved the classification results and significantly improved the image classification accuracy. The Kappa coefficient of supervised classification was 0.4, while the Kappa coefficient of object-oriented classification was 0.8. The research result provided a new method and basic data for the investigation of wetlands in coal mining subsidence area and the study of the spatial distribution of vegetation under the influence of mining subsidence.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

肖武,任河,呂雪嬌,閆皓月,孫詩(shī)睿.基于無(wú)人機(jī)遙感的高潛水位采煤沉陷濕地植被分類(lèi)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(2):177-186. XIAO Wu, REN He, Lü Xuejiao, YAN Haoyue, SUN Shirui. Vegetation Classification by Using UAV Remote Sensing in Coal Mining Subsidence Wetland with High Ground-water Level[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(2):177-186.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2018-08-24
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2019-02-10
  • 出版日期:
文章二維碼