0.05),但顯著高于N0+Bc4%、Nl+Bc1%、N0(p<0.05)。0~10cm土層根系平均分枝角為83°17′,深層土壤(大于10cm)根系分枝角均顯著變大,Nl+Bc2%根系分枝角最大,為101°48′。生物炭施用方式改變了棉花根系節(jié)間距(p<0.001),與來(lái)水方向270°根系節(jié)間距變化最顯著,其中N0+Bc4%平均根節(jié)長(zhǎng)度為4cm。生物炭施用方式(p<0.02)和土層深度(p<0.001)均改變了棉花根長(zhǎng)密度。冗余分析表明:淺層細(xì)根和中等根分枝角、深層細(xì)根分枝角和極細(xì)根根長(zhǎng)比例是影響根長(zhǎng)密度的主要因子。綜上所述,1%~2%的生物炭配施0.21t/hm2氮主要改變了深層土壤(大于10cm)陸地棉根系構(gòu)型及形態(tài),并且2%生物炭彌補(bǔ)了灰漠土氮素不足的負(fù)作用。"/>

亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

生物炭配施氮素對(duì)陸地棉盛花期根系形態(tài)與構(gòu)型的影響
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(31660073)和公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)(201503136)


Effects of Biochar Combined with Nitrogen on Root Morphology and System Architecture during Gossypium hirsutum L. Fullbloom Stage
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為揭示生物炭與氮素相互作用對(duì)陸地棉盛花期根系形態(tài)及構(gòu)型的影響規(guī)律,設(shè)置處理N0(常規(guī)施氮,施氮量0.3t/hm2)、N0+Bc1%(常規(guī)施氮+棉稈炭質(zhì)量為耕層土質(zhì)量1%)、Nl+Bc1%(低氮0.21t/hm2+棉稈炭質(zhì)量為耕層土質(zhì)量1%)、Nl+Bc2%(低氮0.21t/hm2+棉稈炭質(zhì)量為耕層土質(zhì)量2%)和N0+Bc4%(常規(guī)施氮+棉稈炭質(zhì)量為耕層土質(zhì)量4%),掘根法采集棉花盛花期0~10cm和大于10cm土層根系,基于廣義加性模型分析土層深度(0~10cm和大于10cm)、生物炭施用方式(生物炭與氮素比例)單獨(dú)以及交互作用對(duì)根系節(jié)間距和根長(zhǎng)密度的影響,并利用冗余分析影響根長(zhǎng)密度的因子。結(jié)果表明:N0+Bc1%細(xì)根平均根長(zhǎng)與Nl+Bc2%沒有顯著差異(p>0.05),但顯著高于N0+Bc4%、Nl+Bc1%、N0(p<0.05)。0~10cm土層根系平均分枝角為83°17′,深層土壤(大于10cm)根系分枝角均顯著變大,Nl+Bc2%根系分枝角最大,為101°48′。生物炭施用方式改變了棉花根系節(jié)間距(p<0.001),與來(lái)水方向270°根系節(jié)間距變化最顯著,其中N0+Bc4%平均根節(jié)長(zhǎng)度為4cm。生物炭施用方式(p<0.02)和土層深度(p<0.001)均改變了棉花根長(zhǎng)密度。冗余分析表明:淺層細(xì)根和中等根分枝角、深層細(xì)根分枝角和極細(xì)根根長(zhǎng)比例是影響根長(zhǎng)密度的主要因子。綜上所述,1%~2%的生物炭配施0.21t/hm2氮主要改變了深層土壤(大于10cm)陸地棉根系構(gòu)型及形態(tài),并且2%生物炭彌補(bǔ)了灰漠土氮素不足的負(fù)作用。

    Abstract:

    In order to reveal the interaction between biochar and nitrogen on affecting the root morphology and system architecture of cotton during fullbloom stage, the root systems and root growth angles of cotton by layered digging at 0~10cm soil layers and below were analyzed through the generalized additive model and redundancy analysis under different biochar application regimes(N0(conventional nitrogen application, 0.3t/hm2), N0+ Bc1%(N0+ 1% cotton biochar as quality of topsoil), Nl+ Bc1%(0.21t/hm2+ 1% cotton biochar as quality of topsoil), Nl+ Bc2%(0.21t/hm2+2% cotton biochar as quality of topsoil)and N0+Bc4%(N0+4% cotton biochar as quality of topsoil). The results showed that there was no significant difference between Nl+Bc2% and N0+Bc1% in average fine root length, but it was significantly higher than those of N0+bc4%, Nl+Bc1% and N0(p<0.05). The average root branch angle was 83°17′ at 0~10cm soil layers and it showed no significance between each group(p>0.05), however, root branching angle was significantly larger at deeper soil, and root branching angle was 101°48′ under Nl+Bc2%. Biochar application changed the cotton root spacing section(p<0.001), and it was more significantly changed in direction with water coming of 270°, where the longest was 4cm under N0+Bc4%. The specific root length density of cotton was altered by biochar application regimes(p<0.02)and soil depth(p<0.001)separately. The redundancy analysis showed that the main factors influencing the root length density were the vertical angle of fine and medium roots in the topsoil, the vertical angle of fine root in the bottom and the percentages of very fine root length. Among root traits, the fine root length was most closely related to vertical root angle. This suggested that vertical root distribution constitutively affected fine root length. Significant genotypic variation existed in the root diameter and root growth angle in interaction with biochar and nitrogen. To sum up, the application of 0.21t/hm2 nitrogen with biochar of 1%~2% topsoil mass mainly changed the root system architecture and morphology of cotton at the bottom soil(>10cm)and 2% biochar made up for the negative effect of nitrogen deficiency.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

馮雷,徐萬(wàn)里,唐光木,孫寧川,蒲勝海,耿增超.生物炭配施氮素對(duì)陸地棉盛花期根系形態(tài)與構(gòu)型的影響[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(3):241-249. FENG Lei, XU Wanli, TANG Guangmu, SUN Ningchuan, PU Shenghai, GENG Zengchao. Effects of Biochar Combined with Nitrogen on Root Morphology and System Architecture during Gossypium hirsutum L. Fullbloom Stage[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(3):241-249.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2018-10-08
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2019-03-10
  • 出版日期: 2019-03-10
文章二維碼
电缆直流耐压试验设备| 活性剂表面张力仪| 过滤洗涤干燥三合一| 林频品牌设备厂| 悬浮式拼装地板| 云南全自动次氯酸钠发生器| 卧螺离心机| 轨道平车| 塑料化工储罐厂家| 韩国丝锥价格| 实验进口设备| 铝合金破碎机| 普发真空泵| 反应性及反应后强度| REDLION仪表| Whirl| PRElectronics变送器| 磨床粉尘收集吸尘机| 投影仪批发零售| HAST高压加速寿命老化试验箱| 净化废气过滤器| DCS控制器| 电力仪表| 自动拆包机| 高精度安规测试仪| 电导测试仪| 废铁金属破碎机| 非接触式测温仪| 数显表维修| 液位变送器| 电厂钢格板| 监狱护栏网| 磁力高压反应釜| 橡胶冲片机| 粗糙度轮廓仪维修| 地铁管片螺栓厂| cod智能消解器| LOKE迪马斯激光测距传感器| ROHS检测仪| 专业生产单向逆止器| 辐射报警装置|