亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于遷移學(xué)習(xí)和Mask R-CNN的稻飛虱圖像分類方法
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金面上項(xiàng)目(61773216)和江蘇省自然科學(xué)基金面上項(xiàng)目(BK20171386)


Rice Planthopper Image Classification Method Based on Transfer Learning and Mask R-CNN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)當(dāng)前稻飛虱圖像識(shí)別研究中自動(dòng)化程度較低、識(shí)別精度不高的問(wèn)題,提出了一種基于遷移學(xué)習(xí)和Mask R-CNN的稻飛虱圖像分類方法。首先,根據(jù)稻飛虱的生物特性,采用本團(tuán)隊(duì)自主研發(fā)的野外昆蟲圖像采集裝置,自動(dòng)獲取稻田稻飛虱及其他昆蟲圖像;采用VIA為數(shù)據(jù)集制作標(biāo)簽,將數(shù)據(jù)集分為稻飛虱和非稻飛虱兩類,并通過(guò)遷移學(xué)習(xí)在ResNet50框架上訓(xùn)練數(shù)據(jù);最后,基于Mask R-CNN分別對(duì)稻飛虱、非稻飛虱、存在干擾以及存在黏連和重合的昆蟲圖像進(jìn)行分類實(shí)驗(yàn),并與傳統(tǒng)圖像分類算法(SVM、BP神經(jīng)網(wǎng)絡(luò))和Faster R-CNN算法進(jìn)行對(duì)比。實(shí)驗(yàn)結(jié)果表明,在相同樣本條件下,基于遷移學(xué)習(xí)和Mask R-CNN的稻飛虱圖像分類算法能夠快速、有效識(shí)別稻飛虱與非稻飛虱,平均識(shí)別精度達(dá)到0.923,本研究可為稻飛虱的防治預(yù)警提供信息支持。

    Abstract:

    In order to deal with the problem of low automation and low recognition accuracy in the current rice planthopper image recognition research, an image classification algorithm based on transfer learning and Mask R-CNN was proposed. Firstly, according to biological characteristics of rice planthopper, the self-developed wild insect image collection device was utilized to obtain insect images automatically. Then, the dataset was divided into two categories: rice planthopper and non-rice planthopper by the image label tool VIA, and was trained in the ResNet50 framework with transfer learning. Finally, the Mask R-CNN image classification experiments were carried out based on rice planthopper images, non-rice planthopper images, insect images with disturbances and those images which were adhesive and overlapping, respectively. Moreover, experiments were compared with SVM, BP neural network, which were traditional image classification algorithms, and Faster R-CNN algorithm. Experiment results showed that the method based on transfer learning and Mask R-CNN could distinguish the rice planthopper and non-rice planthopper images effectively and the average classification accuracy reached 0.923 under the same sample conditions, which could provide information support for the prevention and early warning of rice planthoppers.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

林相澤,朱賽華,張俊媛,劉德營(yíng).基于遷移學(xué)習(xí)和Mask R-CNN的稻飛虱圖像分類方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(7):201-207. LIN Xiangze, ZHU Saihua, ZHANG Junyuan, LIU Deying. Rice Planthopper Image Classification Method Based on Transfer Learning and Mask R-CNN[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(7):201-207.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-01-02
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2019-07-10
  • 出版日期: