亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于ISRCDKF的移動(dòng)機(jī)器人同時(shí)定位與建圖研究
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(61763037)和內(nèi)蒙古自然科學(xué)基金項(xiàng)目(2017MS0601)


Simultaneous Localization and Mapping of Mobile Robot Based on ISRCDKF Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為解決移動(dòng)機(jī)器人在同時(shí)定位和建圖(Simultaneous localization and mapping,SLAM)技術(shù)中普遍存在狀態(tài)精度不高、穩(wěn)定性差、計(jì)算復(fù)雜等問題,提出一種基于迭代平方根中心差分卡爾曼濾波(Iterated square root central difference Kalman filter,ISRCDKF)的SLAM自主定位算法,以滿足SLAM過程中的實(shí)時(shí)性、準(zhǔn)確性等要求。該算法使用中心差分變換處理SLAM的非線性問題,避免了泰勒公式展開中雅可比矩陣復(fù)雜運(yùn)算;同時(shí)在濾波更新過程中,通過直接傳遞協(xié)方差矩陣的平方根因子減少算法的復(fù)雜度;在迭代觀測更新過程中,使用列文伯格-馬夸爾特(Levenberg-Marquardt,L-M)優(yōu)化方法引入調(diào)節(jié)參數(shù),實(shí)時(shí)修正協(xié)方差矩陣,達(dá)到提高算法精度、增強(qiáng)穩(wěn)定性的目的。仿真結(jié)果表明,在相同的數(shù)據(jù)模型和噪聲環(huán)境下,本文提出的ISRCDKF-SLAM算法與基于擴(kuò)展卡爾曼濾波(Extended Kalman filter,EKF)的SLAM算法、無跡卡爾曼濾波(Unscented Kalman filter,UKF)的SLAM算法和容積卡爾曼濾波(Cubature Kalman filter,CKF)的SLAM算法相比,均方根誤差分別降低了47.3%、32.7%和25.0%;與相同計(jì)算復(fù)雜度的UKF-SLAM算法和CKF-SLAM算法相比,新算法的運(yùn)行時(shí)間分別減少了15.1%和10.8%。將新算法嵌入到移動(dòng)機(jī)器人平臺(tái)進(jìn)行現(xiàn)場實(shí)驗(yàn)驗(yàn)證,進(jìn)一步證明了該算法的實(shí)用性和有效性。

    Abstract:

    In the simultaneous localization and mapping (SLAM) technology, mobile robots generally has problems such as low state accuracy, poor stability, and complicated calculation, which can not meet the requirements of real-time and accuracy in the SLAM process. In order to improve this problem, an SLAM autonomous positioning algorithm was proposed based on iterated square root central difference Kalman filter (ISRCDKF). The central difference transform was used to deal with the nonlinear problem of SLAM, avoiding complex operations such as Jacobian matrix in the Taylor formula expansion, and directly transmitting the square root factor reduction algorithm of the covariance matrix in the filter update process. In the complexity, the Levenberg-Marquardt (L-M) optimization method was used to introduce the real-time modified covariance matrix of the adjustment parameters in the iterated observation update process to improve the accuracy and stability of the algorithm. The simulation results showed that under the same data model and noise environment, the proposed ISRCDKF-SLAM algorithm was compared with SLAM algorithm based on extended Kalman filter (EKF-SLAM),SLAM algorithm based on unscented Kalman filter (UKF-SLAM) and SLAM algorithm based on cubature Kalman filter (CKF-SLAM), the root mean square error was reduced by 47.3%, 32.7% and 25.0%, respectively. At the same time, compared with the UKF-SLAM algorithm and CKF-SLAM algorithm with the same computational complexity, the running time of the proposed algorithm was reduced by 15.1% and 10.8%, respectively, which proved the effectiveness of the algorithm. Finally, the proposed algorithm was embedded into the mobile robot platform for field experiment verification, which further proved the practicability and effectiveness of the algorithm.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

齊詠生,孫作慧,李永亭,劉利強(qiáng).基于ISRCDKF的移動(dòng)機(jī)器人同時(shí)定位與建圖研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(11):394-403. QI Yongsheng, SUN Zuohui, LI Yongting, LIU Liqiang. Simultaneous Localization and Mapping of Mobile Robot Based on ISRCDKF Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(11):394-403.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-04-17
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2019-11-10
  • 出版日期: