亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于改進PCNN的番茄植株夜間圖像分割算法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

浙江省自然科學基金項目(LY17C130006)


Image Segmentation for Tomato Plants at Night Based on Improved PCNN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為實現(xiàn)番茄植株夜間圖像分割,設(shè)計了一種基于最大類間方差法的改進脈沖耦合神經(jīng)網(wǎng)絡(luò)(PCNN)圖像分割算法。該算法對傳統(tǒng)PCNN模型中的鏈接輸入項進行加權(quán)處理,在進行圖像分割前,先基于最大類間方差(Otsu)算法獲得閾值,再將該閾值賦值給改進PCNN模型中的鏈接輸入項權(quán)值、突觸鏈接系數(shù)β、鏈接權(quán)放大系數(shù)VE和閾值迭代衰減時間常數(shù)αE。對849幅番茄植株夜間圖像進行試驗,結(jié)果表明,圖像分割正確率平均值為90.43%,平均每幅圖像分割時間為0.9944s;輸入鏈接項的加權(quán)處理可減少PCNN的迭代次數(shù),提高算法的實時性;基于Otsu算法可實現(xiàn)改進PCNN模型的網(wǎng)絡(luò)參數(shù)自適應(yīng)設(shè)置?;谝曈X效果、最大熵及分割正確率這3項評價指標的對比分析顯示,改進PCNN模型的分割效果優(yōu)于Otsu算法和傳統(tǒng)PCNN模型,實時性優(yōu)于傳統(tǒng)PCNN模型。

    Abstract:

    In order to realize the image segmentation for tomato plants at night, an improved pulse coupled neural network (PCNN) image segmentation algorithm was designed based on the maximum inter-group variance method. The algorithm weighted the link input in the traditional PCNN model. Before the image segmentation, the threshold was obtained based on the maximum inter-class variance (Otsu) algorithm, and then the threshold was assigned to the weight of the link input, the synaptic link coefficient , the link weight amplification factor and the threshold iterative decay time constant in the improved PCNN model. The results of 849 images of tomato plants at night showed that the average segmentation accuracy was 90.43% and the average segmentation time of one image was 0.9944s. The weighted processing of the link input could reduce the number of the iterations of improved PCNN and improve the real-time performance of the algorithm. Based on the Otsu algorithm, the network parameters can be set adaptively in the improved PCNN model. The comparative analysis based on the visual evaluation, the maximum entropy and the segmentation accuracy rate showed that the segmentation effect of improved PCNN model was better than those of the Otsu algorithm and the traditional PCNN model, and its real-time performance was also better than that of the traditional PCNN model.

    參考文獻
    相似文獻
    引證文獻
引用本文

項榮,張杰蘭.基于改進PCNN的番茄植株夜間圖像分割算法[J].農(nóng)業(yè)機械學報,2020,51(3):130-137. XIANG Rong, ZHANG Jielan. Image Segmentation for Tomato Plants at Night Based on Improved PCNN[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(3):130-137.

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-07-29
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-03-10
  • 出版日期: