亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于M-LP特征加權(quán)聚類的果樹冠層圖像分割方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2017YFD0701400、2016YFD0200700)


Fruit Tree Canopy Image Segmentation Method Based on M-LP Features Weighted Clustering
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對背景和雜草干擾下的果樹圖像冠層提取問題,提出了一種基于M-SP特征加權(quán)聚類的冠層分割算法。首先,將采集的原始圖像由RGB顏色空間轉(zhuǎn)換到HSI顏色空間,計算果樹與背景區(qū)域在H、S分量上的馬氏距離,構(gòu)造馬氏距離相似度矩陣〖WTHX〗M〖WTBX〗;其次,提取圖像像素的垂直位置作為空間特征〖WTHX〗P〖WTBZ〗,在HSI空間內(nèi)的I分量上,利用最大熵算法提取圖像的陰影區(qū)域,并進行掩膜處理,將獲取的陰影區(qū)域作為空間特征的加權(quán)區(qū)域L,從而構(gòu)造陰影位置加權(quán)的空間特征〖WTHX〗L〖WTBX〗P;最后,對獲取的M-LP特征矩陣進行歸一化處理,分別進行上背景、下背景、果樹冠層、雜草4個類別的Kmeans聚類,最終完成圖像分割。為驗證算法的有效性,在采集的果樹圖像上進行了分割試驗,結(jié)果表明,基于M-LP特征的聚類方法能有效解決重度雜草干擾條件下果樹冠層被漏分的問題。采用精確率、召回率和F1值3個評價指標對分割結(jié)果進行定量評價,選取不同雜草干擾程度(輕微、中等、較強)和時間段(早晨、中午、傍晚)的果樹圖像,分別以傳統(tǒng)K-means和GMM聚類算法作為對比進行試驗,結(jié)果表明,相對于未經(jīng)過特征提取的普通聚類分割方法,本文算法對于不同雜草干擾程度和不同拍攝時間段下的果樹冠層分割表現(xiàn)出一定的魯棒性,平均精確率為87.1%,平均召回率為87.7%,平均F1值為87.1%。分割和驗證結(jié)果表明,在進行有效圖像特征提取的基礎(chǔ)上,結(jié)合少量標注作為先驗知識的無監(jiān)督分割方法可以準確分割出果樹冠層區(qū)域。

    Abstract:

    Fruit canopy information collection plays an important role in the orchard variable spray. Aiming at the problem of canopy extraction of fruit trees under background (nongreen plants) and weed disturbance, a canopy segmentation algorithm was proposed based on M-SP feature weighted clustering. The segmentation process can be described as: the original image was converted from RGB color space to HSI color space. The Mahalanobis distance similarity matrix (M) was constructed by calculating the hue (H) and saturation (S) components between fruit tree and the background; moreover, luminance feature (L) was extracted: the vertical position of the pixel was used as the position feature (P). The maximum entropy algorithm was used to extract the shadow region of the image and perform mask processing on the intensity (I) component in the HSI. The obtained shadow region was used as weighted region S of spatial feature, thereby constructing the shadow position weighting. Finally, the acquired M-SP feature matrix was normalized, and the Kmeans clustering of the upper background, the lower background, the fruit canopy and the weeds were respectively performed, and the image segmentation was finally completed. In order to verify the accuracy of the quantitative verification algorithm, precision, recall and F1scores were used to evaluate the image segmentation results under different weed disturbance levels (slight, medium and strong) and time segments (morning, noon and evening). The Kmeans and Gaussian mixture model (GMM) without feature extraction were used respectively as comparative experiments. The results showed that the proposed method was robust to the canopy segmentation of fruit trees under different weed interference levels and different shooting time periods. The average precision was 87.1%, the average recall was 87.7%, and the average F1scores was 87.1%. The segmentation and verification results showed that the algorithm can accurately segment the canopy area of fruit trees, which provided a reference for collecting the canopy information of fruit trees by computer vision.

    參考文獻
    相似文獻
    引證文獻
引用本文

程湞湞,祁力鈞,程一帆,吳亞壘,張豪,肖雨.基于M-LP特征加權(quán)聚類的果樹冠層圖像分割方法[J].農(nóng)業(yè)機械學報,2020,51(4):191-198,260. CHENG Zhenzhen, QI Lijun, CHENG Yifan, WU Yalei, ZHANG Hao, XIAO Yu. Fruit Tree Canopy Image Segmentation Method Based on M-LP Features Weighted Clustering[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(4):191-198,260.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-06-02
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-04-10
  • 出版日期: 2020-04-10
文章二維碼