亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于改進(jìn)YOLO v3網(wǎng)絡(luò)的夜間環(huán)境柑橘識(shí)別方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

廣東省重點(diǎn)領(lǐng)域研究計(jì)劃項(xiàng)目(2019B020223002)、國家級大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃項(xiàng)目(201810564013)、廣東省大學(xué)生科技創(chuàng)新培育專項(xiàng)資金項(xiàng)目(Pdjh2018b0079)和廣東省普通高校特色創(chuàng)新類項(xiàng)目(2018GKTSCX014)


Citrus Detection Method in Night Environment Based on Improved YOLO v3 Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為研究夜間環(huán)境下采摘機(jī)器人的視覺檢測技術(shù),實(shí)現(xiàn)采摘機(jī)器人的夜間作業(yè),提出了一種多尺度卷積神經(jīng)網(wǎng)絡(luò)Des-YOLO v3算法,可實(shí)現(xiàn)夜間復(fù)雜環(huán)境下成熟柑橘的識(shí)別與檢測。借鑒殘差網(wǎng)絡(luò)和密集連接網(wǎng)絡(luò),設(shè)計(jì)了Des-YOLO v3網(wǎng)絡(luò)結(jié)構(gòu),實(shí)現(xiàn)了網(wǎng)絡(luò)多層特征的復(fù)用和融合,加強(qiáng)了小目標(biāo)和重疊遮擋果實(shí)識(shí)別的魯棒性,顯著提高了果實(shí)檢測精度。柑橘識(shí)別試驗(yàn)結(jié)果表明, Des-YOLO v3網(wǎng)絡(luò)的精確率達(dá)97.67%、召回率為97.46%、F1值為0.976,分別比YOLO v3網(wǎng)絡(luò)高6.26個(gè)百分點(diǎn)、6.36個(gè)百分點(diǎn)和0.063。同時(shí),經(jīng)過訓(xùn)練的模型在測試集下的平均精度(mAP)為90.75%、檢測速度達(dá)53f/s,高于YOLO v3_DarkNet53網(wǎng)絡(luò)的平均精度88.48%,mAP比YOLO v3_DarkNet53網(wǎng)絡(luò)提高了2.27個(gè)百分點(diǎn),檢測速度比YOLO v3_DarkNet53網(wǎng)絡(luò)提高了11f/s。研究結(jié)果表明,本文提出的Des-YOLO v3網(wǎng)絡(luò)對野外夜間復(fù)雜環(huán)境下成熟柑橘的識(shí)別具有更強(qiáng)的魯棒性和更高的檢測精度,為柑橘采摘機(jī)器人的視覺識(shí)別提供了技術(shù)支持。

    Abstract:

    In China, citrus production occupies an important position in agriculture and has great economic benefit. For a long time, most of citrus harvesting relies on manual work, which has low efficiency and high labor cost. The labor cost accounts for almost onehalf of total labor cost in citrus production process. In addition, citrus picking is usually carried out during the day, while makes less use of night time. Therefore, it is of great significance to develop a fruit picking robot working at nighttime. Focusing on citrus picking process, a multiscale convolution neural network named Des-YOLO v3 was proposed and used to detect citrus at nighttime under natural environment. By using ResNet and DenseNet for reference, the Des-YOLO v3 network was designed to realize the reuse and fusion of multilayer features of the network, which strengthened the robustness of small target and overlapping occlusion fruit recognition, and significantly improved the precision of fruit detection. The experimental results showed that the precision, recall rate and F1 value of the Des-YOLO v3 network were 97.67%, 97.46% and 0.976, respectively, while those of YOLO v3 network were 91.41%, 91.10% and 0.913, respectively. At the same time, the mean average precision of the trained model under the test set was 90.75%, and the detection speed was 53f/s, which was 2.27 percentage points and 11f/s higher than those of YOLO v3_DarkNet53, respectively. The final results showed that the Des-YOLO v3 recognition network had stronger robustness and higher detection precision for the recognition of mature citrus in the complex field environment at night, which provided technical support for the visual recognition of citrus picking robot.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

熊俊濤,鄭鎮(zhèn)輝,梁嘉恩,鐘灼,劉柏林,孫寶霞.基于改進(jìn)YOLO v3網(wǎng)絡(luò)的夜間環(huán)境柑橘識(shí)別方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(4):199-206. XIONG Juntao, ZHENG Zhenhui, LIANG Jiaen, ZHONG Zhuo, LIU Bolin, SUN Baoxia. Citrus Detection Method in Night Environment Based on Improved YOLO v3 Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(4):199-206.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-08-01
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-04-10
  • 出版日期: 2020-04-10
文章二維碼