亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于IFSSD卷積神經(jīng)網(wǎng)絡(luò)的柚子采摘目標(biāo)檢測模型
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFD0701601)、廣東省重點(diǎn)領(lǐng)域研發(fā)計(jì)劃項(xiàng)目(2019B020217003、2019B020214005)和廣東省科技計(jì)劃項(xiàng)目(2015A020224034)


Grapefruit Detection Model Based on IFSSD Convolution Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了解決柚子采摘時(shí)傳統(tǒng)水果檢測模型對于小目標(biāo)柚子漏檢和將葉子誤檢為膨大期柚子的問題,設(shè)計(jì)了一種改進(jìn)的特征融合單鏡頭檢測器(InceptionV3-feature fusion single shot-multibox detector,IFSSD)。該檢測器以特征融合單發(fā)多盒探測器(Feature fusion single shot-multibox detector,FSSD)為基礎(chǔ)檢測器,以改進(jìn)的InceptionV3網(wǎng)絡(luò)作為骨干網(wǎng)絡(luò)代替超深度卷積神經(jīng)網(wǎng)絡(luò)(Very deep convolutional networks 16,VGG16),從而提高了計(jì)算效率,同時(shí)使用Focal Loss損失函數(shù)代替Multibox Loss損失函數(shù),進(jìn)而改善了由于正負(fù)樣本不平衡導(dǎo)致的檢測器誤檢情況。對測試數(shù)據(jù)集進(jìn)行檢測,結(jié)果表明,該模型的檢測準(zhǔn)確率為93.7%(IoU大于0.5),在單個(gè)NVIDIA RTX 2060 GPU 上每幅圖像檢測時(shí)間為29s。本文模型可以實(shí)現(xiàn)樹上柚子的自動(dòng)檢測。

    Abstract:

    The detection, identification and precise positioning of fruit under natural conditions based on machine vision is very important for the development of intelligent picking robots. In order to solve the problem that the traditional fruit detection model for the small target grapefruit missed detection and the leaf was falsely detected as the expansion period grapefruit, an improved feature fusion single multibox detector (InceptionV3-feature fusion single shot-multibox detector, IFSSD) was designed. The feature fusion single multibox detector (feature fusion single shot-multibox detector, FSSD) was used as a base detector and optimized in two ways. On the one hand, the improved InceptionV3 network was used instead of very deep convolutional networks 16 (VGG16) as the backbone network to improve computational efficiency. On the other hand, the Focal Loss function was used instead of the Multibox Loss function, which improved the mischeck ingresss of the detector due to the imbalance of positive and negative samples. Finally, the test data set was verified, and the results showed that the model achieved an average accuracy of 93.7% (mAP) (IoU was greater than 0.5). The time of one image was 29s. The model proposed can automatically detect the grapefruit in the grapefruit tree and locate it accurately in real time, which effectively promoted the development of intelligent picking robot.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

肖德琴,蔡家豪,林思聰,楊秋妹,謝曉君,郭婉怡.基于IFSSD卷積神經(jīng)網(wǎng)絡(luò)的柚子采摘目標(biāo)檢測模型[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(5):28-35,97. XIAO Deqin, CAI Jiahao, LIN Sicong, YANG Qiumei, XIE Xiaojun, GUO Wanyi. Grapefruit Detection Model Based on IFSSD Convolution Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(5):28-35,97.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-07-16
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-05-10
  • 出版日期:
文章二維碼