亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

褐飛虱誘導(dǎo)的水稻冠層熱圖像溫度特征變異評(píng)估方法
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2018YFD0200301)、國(guó)家自然科學(xué)基金項(xiàng)目(31371539)和廣東省重點(diǎn)領(lǐng)域研發(fā)計(jì)劃項(xiàng)目(2019B020217003)


Temperature Eigenvalues Evaluation Method of Rice Canopy Thermal Image Induced by Brown Rice Planthopper
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為尋求水稻被褐飛虱侵害后冠層溫度特征的有效評(píng)估方法,以褐飛虱易感水稻品種“TN1”為研究對(duì)象,設(shè)置了褐飛虱侵害及未侵害兩個(gè)處理,運(yùn)用熱紅外成像技術(shù)獲取水稻的冠層溫度特征,使用機(jī)器學(xué)習(xí)分類器,對(duì)褐飛虱誘導(dǎo)的水稻冠層熱圖像溫度特征變異評(píng)估方法進(jìn)行了研究。首先,對(duì)試驗(yàn)采集的水稻冠層熱圖像和對(duì)應(yīng)時(shí)刻的空氣溫度、相對(duì)濕度以及水稻灌溉水層水溫信息進(jìn)行分析,針對(duì)水稻冠層熱圖像提取了3種統(tǒng)計(jì)學(xué)溫度特征,并使用了累計(jì)差值法分析水稻冠層的特征數(shù);然后,對(duì)空氣溫度、相對(duì)濕度、水溫與冠層溫度特征分別進(jìn)行了相關(guān)性分析;最后,分別采用邏輯回歸算法與支持向量機(jī)算法進(jìn)行評(píng)估模型的擬合。結(jié)果表明:3種統(tǒng)計(jì)學(xué)特征中,冠層溫度變異系數(shù)的累計(jì)差值為30.78,是差異性最大的特征值;統(tǒng)計(jì)學(xué)特征與空氣溫度、相對(duì)濕度和水溫的皮爾遜系數(shù)分別為0.27、-0.34和0.41。將3種冠層特征作為輸入向量,采用邏輯回歸算法判斷水稻受褐飛虱侵害狀況的測(cè)試集精準(zhǔn)率為87.15%,召回率為86.54%,F(xiàn)1綜合指標(biāo)為86.55%。本文提出將氣象因子與水稻的冠層特征數(shù)相結(jié)合,對(duì)水稻受褐飛虱侵害的冠層溫度特征進(jìn)行評(píng)估,可為水稻蟲(chóng)害的監(jiān)測(cè)與診斷提供參考。

    Abstract:

    The change of canopy statistical temperature eigenvalue is one of the important index for crop pest identification. However, with the effects of environmental temperature and humidity fluctuations, when canopy temperature is used directly in the time series for pest evaluation, the healthy plants must be set for comparison. Therefore, the method is not operable in practical production applications. In order to find an effective method for evaluating the canopy statistical temperature eigenvalues of rice plants after brown planthopper infestation, the brown planthopper susceptible rice variety “TN1” was taken as the object, and two treatments of brown planthopper infestation and non-infestation were set. The infrared canopy was used to obtain the canopy of rice. The temperature eigenvalues were evaluated by using a machine learning classifier to evaluate the temperature characteristics of rice canopy-induced thermal images of rice canopy. In data analysis, three canopy statistical temperature eigenvalues extracted from the thermal images were used, and the features that best reflected the differences were selected. The cumulative difference of the canopy temperature coefficient of variation was 30.78. And then, combined with air temperature, relative humidity and water temperature, the logistic regression and support vector machine were used to fit the evaluation model. For determining brown rice planthopper damage by the logistic regression algorithm,when three canopy statistical temperature eigenvalues were used as input vector, the accuracy of the logistic regression test set was 87.15%, the recall rate was 86.54%, and the F1-measure was 86.55%. Support vector machine algorithm test set accuracy rate was 86.74%, recall rate was 86.90%, and F1-measure was 86.53%. In practical applications, the statistical eigenvalue of the canopy thermal image of rice can be obtained by calculating the air temperature, relative humidity and water temperature information to evaluate whether the inversion showed the invasion of brown rice planthopper. It was of great significance for the health monitoring and diagnosis of rice.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劉又夫,肖德琴,劉亞蘭,鐘伯平,周志艷.褐飛虱誘導(dǎo)的水稻冠層熱圖像溫度特征變異評(píng)估方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(5):165-172. LIU Youfu, XIAO Deqin, LIU Yalan, ZHONG Boping, ZHOU Zhiyan. Temperature Eigenvalues Evaluation Method of Rice Canopy Thermal Image Induced by Brown Rice Planthopper[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(5):165-172.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-11-12
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-05-10
  • 出版日期:
文章二維碼