亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于BiGRU_MulCNN的農(nóng)業(yè)問(wèn)答問(wèn)句分類(lèi)技術(shù)研究
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(61871041、61571051)和北京市自然科學(xué)基金項(xiàng)目(4172024、4172026)


Classification Technology of Agricultural Questions Based on BiGRU_MulCNN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    “中國(guó)農(nóng)技推廣”問(wèn)答社區(qū)每天新增提問(wèn)數(shù)據(jù)近萬(wàn)條,對(duì)提問(wèn)的有效分類(lèi)是實(shí)現(xiàn)智能問(wèn)答的關(guān)鍵技術(shù)環(huán)節(jié)。海量提問(wèn)數(shù)據(jù)具有特征稀疏性強(qiáng)、噪聲大、規(guī)范性差的特點(diǎn),制約了文本分類(lèi)效果。為了改善農(nóng)業(yè)問(wèn)答問(wèn)句短文本分類(lèi)性能,提出了BiGRU_MulCNN分類(lèi)模型,運(yùn)用TF-IDF算法拓展文本特征,并加權(quán)表示文本詞向量,利用雙向門(mén)控循環(huán)單元神經(jīng)網(wǎng)絡(luò)獲取輸入詞向量的上下文特征信息,構(gòu)建多尺度并行卷積神經(jīng)網(wǎng)絡(luò),進(jìn)行多粒度的特征提取。試驗(yàn)結(jié)果表明,基于混合神經(jīng)網(wǎng)絡(luò)的短文本分類(lèi)模型可以?xún)?yōu)化文本表示和文本特征提取,能夠準(zhǔn)確地對(duì)用戶(hù)提問(wèn)進(jìn)行自動(dòng)分類(lèi),正確率達(dá)95.9%,與其他9種文本分類(lèi)方法相比,分類(lèi)性能優(yōu)勢(shì)明顯。

    Abstract:

    With the rapid development of mobile internet, short text data of APPs has exploded. In the field of agriculture, tens of thousands of questions about agricultural technology have been put forward in agro-technical extension community. Accurate classification is the basis of agricultural intelligent Q&A and the guarantee of precise information service. In order to improve the performance of data classification,a short text classification method based on BiGRU_MulCNN model was proposed to overcome the limitations of the classification process, such as few vocabulary, sparse features, large amount of data, lots of noise and poor normalization. In the model, Jieba word segmentation tools and agricultural dictionary were selected to text segmentation, then TF-IDF algorithm was adopted to expand the text characteristic and weighted word vector according to the text of key vector, and bi-directional gated recurrent unit was applied to catch the context feature information, multi-convolutional neural networks was finally established to gain local multidimensional characteristics of text. Batch-normalization, Dropout, Global Average Pooling and Global Max Pooling were involved to solve over-fitting problem. The results showed that the model could classify questions accurately, with an accuracy of 95.9%. Compared with other models, such as CNN model, RNN model and CNN/RNN combinatorial model, BiGRU_MulCNN had obvious advantages in classification performance in intelligent agro-technical information service.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

金寧,趙春江,吳華瑞,繆祎晟,李思,楊寶祝.基于BiGRU_MulCNN的農(nóng)業(yè)問(wèn)答問(wèn)句分類(lèi)技術(shù)研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(5):199-206. JIN Ning, ZHAO Chunjiang, WU Huarui, MIAO Yisheng, LI Si, YANG Baozhu. Classification Technology of Agricultural Questions Based on BiGRU_MulCNN[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(5):199-206.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-08-20
  • 最后修改日期:
  • 錄用日期:
  • 在線(xiàn)發(fā)布日期: 2020-05-10
  • 出版日期:
文章二維碼