亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

表示學(xué)習(xí)技術(shù)研究進展及其在植物表型中應(yīng)用分析
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(61502236、61806097)、中央高?;究蒲袠I(yè)務(wù)費專項資金項目(KYZ201752)和大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練專項計劃項目(S20190025)


State-of-the-Art Review for Representation Learning and Its Application in Plant Phenotypes
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    表示學(xué)習(xí)是一種將研究對象的內(nèi)在信息表示為稠密低維實值向量的方法,其基本思路是找到對原始數(shù)據(jù)更好的表達。表示學(xué)習(xí)憑借其自動提取特征的能力,在處理大量人為先驗理解有限的數(shù)據(jù)時表現(xiàn)出高效性。有監(jiān)督以及無監(jiān)督的表示學(xué)習(xí)模型在文本、圖像、三維點云等植物表型數(shù)據(jù)的分析研究中獲得了運用。隨著近年來數(shù)據(jù)量的迅速增長以及基因組學(xué)研究的快速發(fā)展,植物表型研究數(shù)據(jù)具有高通量、高精度等特征,表示學(xué)習(xí)模型在海量高維植物表型數(shù)據(jù)的分析任務(wù)中獲得了關(guān)注。本文簡述了表示學(xué)習(xí)的相關(guān)概念和表示學(xué)習(xí)技術(shù)研究進展,對有監(jiān)督和無監(jiān)督的表示學(xué)習(xí)模型進行對比分析,闡述了植物表型數(shù)據(jù)概念及其處理方法,重點從植物種類識別、病蟲害檢測分析、產(chǎn)量預(yù)測、基因研究和形態(tài)結(jié)構(gòu)表型數(shù)據(jù)計算等方面,探討了表示學(xué)習(xí)在植物表型中的研究應(yīng)用意義及其存在的問題。最后,指出表示學(xué)習(xí)在植物表型應(yīng)用中的發(fā)展方向:開發(fā)能夠適用于分析不同種植物表型數(shù)據(jù)的表示學(xué)習(xí)模型,實現(xiàn)高整合度、高通用性的目標(biāo);提高表示學(xué)習(xí)模型的實時性及準確度,以增強其實用性;多模態(tài)表型數(shù)據(jù)的表示學(xué)習(xí)可為學(xué)科的交叉數(shù)據(jù)分析研究提供統(tǒng)一的數(shù)據(jù)視圖。

    Abstract:

    Representation learning is a method of representing the intrinsic information of research object as a dense lowdimensional realvalued vector. The main purpose is to find a better representation of the original data. Representation learning, with its ability to extract features automatically, shows high efficiency when dealing with a large amount of artificially limited prior data. Supervised and unsupervised representation learning models have been used in the analysis of plant phenotypic data such as text, images, and 3D point clouds. With the rapid growth of data in recent years and the rapid development of genomics research, plant phenotypic research data has features like high throughput and high accuracy. Representation learning models have gained attention in the analysis of massive highdimensional plant phenotypic data. The related concepts of representation learning were briefly introduced, supervised and unsupervised representation learning models were compared and analyzed, plant phenotypic data concepts and processing methods were briefly introduced, which was mainly focused on plant species identification, pest detection and analysis, yield prediction, gene research and morphological structure phenotypic data calculation, etc.. The significance of the research application of representation learning in plant phenotypes and its problems were also discussed. Finally, the application trends of representation learning in plant phenotypes were prospected: developing representation learning models that can be applied to the analysis of different plant phenotype data; improving the realtime and accuracy of representation learning models to enhance their practicality; designing multimodal phenotypic data representation learning models that provided consistent data views for phenotypic data analysis.

    參考文獻
    相似文獻
    引證文獻
引用本文

袁培森,李潤隆,任守綱,顧興健,徐煥良.表示學(xué)習(xí)技術(shù)研究進展及其在植物表型中應(yīng)用分析[J].農(nóng)業(yè)機械學(xué)報,2020,51(6):1-14. YUAN Peisen, LI Runlong, REN Shougang, GU Xingjian, XU Huanliang. State-of-the-Art Review for Representation Learning and Its Application in Plant Phenotypes[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(6):1-14.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-02-27
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-06-10
  • 出版日期: