亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于深度學(xué)習(xí)的草地生態(tài)系統(tǒng)凈碳交換模擬
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFC0504400)


Simulation of NEE in Grassland Ecosystems Based on Deep Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為應(yīng)用深度學(xué)習(xí)理論及技術(shù)對高寒地區(qū)草原生態(tài)系統(tǒng)凈碳交換(NEE)進(jìn)行模型模擬,基于全球通量觀測網(wǎng)絡(luò)(FLUXNET)中內(nèi)蒙古自治區(qū)錫林郭勒盟多倫縣草原2007—2008年間的CO2通量數(shù)據(jù),采用深度學(xué)習(xí)中基于注意力機(jī)制的編碼器-解碼器框架對NEE進(jìn)行模擬,使用隨機(jī)森林模型計(jì)算光量子通量密度(PPFD)、土壤溫度(Ts)、空氣溫度(Ta)、降水量(P)、土壤含水率(SWC)和飽和水汽壓差(VPD)與NEE關(guān)系的重要性得分,并分析該關(guān)系的季節(jié)性差異。結(jié)果表明,深度學(xué)習(xí)模型的均方根誤差為0.28μmol/(m2·s),決定系數(shù)為0.93,相比傳統(tǒng)的人工神經(jīng)網(wǎng)絡(luò)與支持向量機(jī)模型,分別減小0.14、0.08μmol/(m2·s)和增加0.29、0.34,說明深度學(xué)習(xí)模型具有更高預(yù)測準(zhǔn)確度;在深度學(xué)習(xí)模型中引入注意力機(jī)制后,10次訓(xùn)練預(yù)測的標(biāo)準(zhǔn)差為0.002μmol/(m2·s),〖JP2〗相比普通深度學(xué)習(xí)編碼器-解碼器網(wǎng)絡(luò)模型和長短期記憶網(wǎng)絡(luò)分別減小0.005μmol/(m2·s)和0.036μmol/(m2s),驗(yàn)證了注意力機(jī)制在預(yù)測穩(wěn)定性上的優(yōu)勢。由隨機(jī)森林模型計(jì)算的環(huán)境因子重要性得分顯示,由非生長季向生長季過渡的3—4月間,PPFD(33.5)與VPD(30.0)對NEE的變化起主導(dǎo)作用;進(jìn)入生長季后的5—6月間,SWC(50.5)是NEE變化的主要影響因素;7月P(3.8)較少,PPFD(26.8)與SWC(60.1)協(xié)同作用NEE的變化;8月PPFD(2.8)與SWC(6.9)相對充足,VPD(41.5)與P(42.7)成為影響NEE的主要因素;9月后PPFD與P均急劇減小,并維持穩(wěn)定,溫度系數(shù)Q10較生長季略增大,并在1月達(dá)到最大值596,因此,在非生長季1—3月Ts(44.6)與10—12月Ts(54.2)通過影響植物呼吸成為影響NEE的決定性因子。高寒地區(qū)草地生態(tài)系統(tǒng)生長季的NEE變化主要受輻射、溫度和水分的影響,非生長季主要受溫度影響,且輻射、溫度、水分的影響程度存在明顯季節(jié)性差異。與支持向量機(jī)等傳統(tǒng)機(jī)器學(xué)習(xí)算法相比,深度學(xué)習(xí)理論及技術(shù)在生態(tài)模型模擬領(lǐng)域具有更好的應(yīng)用前景。

    Abstract:

    Aiming to apply deep learning theory and technology to model the net ecosystem exchange (NEE) of grassland ecosystems in the alpine region, based on the FLUXNET CO2 flux data of the grassland in Duolun County, Xilinguole League, Inner Mongolia Autonomous Region, from 2007 to 2008, the attentionbased encoderdecoder framework in deep learning was used to simulate NEE, and the random forest model was used to calculate the importance score of the relationship between NEE, which included the photosynthetic photon flux density (PPFD), soil temperature (Ts), air temperature (Ta), precipitation (P) 〖JP3〗and soil moisture content (SWC) and water pressure difference (VPD), and their seasonal differences in the relationship were analyzed. The result showed that the root mean square error (RMSE) of the deep learning model was 0.28μmol/(m2·s), which was declined by 0.14μmol/(m2·s) and 0.08μmol/(m2·s), respectively, compared with ANN and SVM. The coefficient of determination was 0.93, which was increased by 0.29 and 0.34, respectively. With the attention mechanism, the RMSE standard deviation predicted by 10 times training was 0.002μmol/(m2·s), which showed a reduction of 0.005μmol/(m2·s) and 0.036μmol/(m2·s) compared with Encoder-decoder network model and long short-term memory (LSTM). The attention mechanism model was more competitive in predicting stability. The importance score calculated by random forest model showed the variations of photon flux density PPFD (335) and saturated vapor pressure VPD (30.0) played a leading role in the variations of NEE from March to April. During the period from May to June after the growing season, soil water content SWC (50.5) was the main influencing factor of NEE variations. The precipitation P (3.8) showed a process of decrease in July, and the photon flux density PPFD (26.8) and the soil water content SWC (60.1) were the collaborative decision of NEE. In August, PPFD (2.8) and SWC (6.9) were relatively abundant with plentiful rainfall. The saturated vapor pressure difference VPD (41.5) and rainfall P (42.7) became the main factors affecting NEE. After September, the photon flux density PPFD and rainfall were both decreased sharply and remained stable. The temperature coefficient Q10 was increased slightly compared with the growing season and reached a maximum value of 5.96 in January, so temperature was the decisive factor affecting NEE through plant respiration in non growing season, which is 44.6 between January to March and 542 between October and December. In conclusion, radiation, temperature and moisture remarkably affected NEE in the growing season of grassland ecosystems in alpine region, temperature was the main factor in nongrowing season. Comparing with traditional machine learning algorithms such as support vector machines, deep learning theory and technology had better application prospects in the field of ecological model simulation.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

齊建東,黃俊堯.基于深度學(xué)習(xí)的草地生態(tài)系統(tǒng)凈碳交換模擬[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(6):152-161. QI Jiandong, HUANG Junyao. Simulation of NEE in Grassland Ecosystems Based on Deep Learning[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(6):152-161.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-07-12
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-06-10
  • 出版日期: