亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于CNN和圖像深度特征的雛雞性別自動(dòng)鑒別方法
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

河北省現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系蛋雞肉雞創(chuàng)新團(tuán)隊(duì)項(xiàng)目(HBCT2018150408)、張家口市科技計(jì)劃重點(diǎn)研發(fā)項(xiàng)目(1911016C-9)和河北省高等學(xué)??茖W(xué)技術(shù)研究重點(diǎn)項(xiàng)目(ZD2017204)


Automatic Recognition Method of Chick Sex Based on Convolutional Neural Network and Image Depth Features
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為有效辨別雛雞性別,提高養(yǎng)雞效益,針對(duì)部分雛雞的泄殖腔特征不明顯、采集雛雞泄殖腔圖像易受光線影響的問題,提出了一種基于卷積神經(jīng)網(wǎng)絡(luò)和圖像深度特征的雛雞性別自動(dòng)鑒別方法。以翻肛法采集的雛雞泄殖腔圖像為研究對(duì)象,利用卷積神經(jīng)網(wǎng)絡(luò)構(gòu)建待識(shí)別雛雞泄殖腔的深度特征和雛雞泄殖腔的深度特征向量集合庫(kù);將待識(shí)別雛雞泄殖腔的深度特征與雛雞泄殖腔的深度特征集合庫(kù)進(jìn)行相似度比較,并對(duì)比較結(jié)果進(jìn)行排序;將排序結(jié)果中排在前n個(gè)與待識(shí)別雛雞泄殖腔圖像最接近的深度特征,與待識(shí)別雛雞泄殖腔的深度特征進(jìn)行特征融合,再通過卷積神經(jīng)網(wǎng)絡(luò)進(jìn)行識(shí)別。結(jié)果表明,本文方法在測(cè)試數(shù)據(jù)集的識(shí)別準(zhǔn)確率達(dá)到了97.04%,在生產(chǎn)環(huán)境下識(shí)別準(zhǔn)確率達(dá)到了96.82%,相比常規(guī)的卷積神經(jīng)網(wǎng)絡(luò)方法,本文方法提高了雛雞性別的識(shí)別準(zhǔn)確率。

    Abstract:

    Aiming at the problems of some chicks’ unobvious cloacal features and the influence of light on the collection of chicks’ cloacal images, a method of automatic recognition of chick sex based on convolutional neural network (CNN) and image depth features was proposed to effectively distinguish male and female chicks and enhance the benefit of raising chickens. Taking chicks’ cloacal images collected by the method of anal examination as the research object, a CNN was used to establish vector collection libraries, including the indepth features of both chicks’ cloacal images to be identified and chicks’ cloacal images. Similarity comparison was performed between the collection libraries of the indepth features of chicks’ cloacal images to be identified, and chicks’ cloacal images and the comparative results were ranked. Feature fusion was conducted for the indepth features that were ranked top n in the ranking results and were the most similar to chicks’ cloacal images to be identified and the indepth features of chicks’ cloacal images to be identified. The depth characteristics of the clonal cavity of the chick were highlighted, and then identification was carried out via CNN. The experiment results showed that the accuracy on the test dataset reached 97.04%, and in the production environment reached 96.82%. Compared with conventional CNN methods, it improved the recognition rate for identifying male and female chicks’ cloaca.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

楊晶晶,韓閏凱,吳占福,李忠華,楊東,李玲.基于CNN和圖像深度特征的雛雞性別自動(dòng)鑒別方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(6):258-263,92. YANG Jingjing, HAN Runkai, WU Zhanfu, LI Zhonghua, YANG Dong, LI Ling. Automatic Recognition Method of Chick Sex Based on Convolutional Neural Network and Image Depth Features[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(6):258-263,92.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-10-22
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-06-10
  • 出版日期: