亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于GoogLeNet深度遷移學(xué)習(xí)的蘋果缺陷檢測方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(81803234)


Defect Detection Method of Apples Based on GoogLeNet Deep Transfer Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對目前國內(nèi)蘋果分選大部分以人工操作的現(xiàn)狀,提出利用GoogLeNet深度遷移模型對蘋果缺陷進行檢測。檢測結(jié)果表明,本文方法對擴充后的1932個訓(xùn)練樣本的識別準確率為100%,對235個測試樣本的識別準確率為91.91%。為評估目前蘋果缺陷檢測常用算法的性能,將GoogLeNet與淺層卷積神經(jīng)網(wǎng)絡(luò)(AlexNet和改進型LeNet-5)及傳統(tǒng)機器學(xué)習(xí)方法(K-NN、RF、SVM)進行了對比,結(jié)果表明,與蘋果缺陷檢測的常用算法相比,本文方法具有更好的泛化能力與魯棒性。

    Abstract:

    Apple processing has been one of the most important aspects in the field of fruit and vegetable processing for a long time, and how to screen out the defects of apple with high precision and low cost has been one of the key research directions at home and abroad. In view of the current situation of fruit sorting which mainly completed by manual operation in China, the deep transfer model GoogLeNet based on deep convolutional neural network was used to detect the defects of apple, and the results showed that the accuracy rates of GoogLeNet could reach up to 100% and 91.91% based on 1932 expanded training samples and 235 testing samples, respectively. At the same time, through assessing the performance of common machine learning algorithms in the field of apple defects detection, the results of GoogLeNet were compared with the shallow convolutional neural network (AlexNet and the improved LeNet-5) and traditional machine learning algorithms (K-nearest neighbor, K-NN;random forest, RF;support vector machine, SVM) in order to further verify the superiority of GoogLeNet.The results indicated that deep convolutional neural network had better generalization ability and robustness when compared with other conventional algorithms in the field of apple defects detection, which supported its broad application prospects.

    參考文獻
    相似文獻
    引證文獻
引用本文

薛勇,王立揚,張瑜,沈群.基于GoogLeNet深度遷移學(xué)習(xí)的蘋果缺陷檢測方法[J].農(nóng)業(yè)機械學(xué)報,2020,51(7):30-35. XUE Yong, WANG Liyang, ZHANG Yu, SHEN Qun. Defect Detection Method of Apples Based on GoogLeNet Deep Transfer Learning[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(7):30-35.

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-10-21
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-07-10
  • 出版日期:
文章二維碼