亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于輕量化YOLOv3卷積神經(jīng)網(wǎng)絡(luò)的蘋果檢測方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(61973154)、國防基礎(chǔ)科研計劃項目(JCKY2018605C004)、中央高?;究蒲袠I(yè)務(wù)費專項資金項目(NS2019033)和南京航空航天大學(xué)研究生創(chuàng)新基地(實驗室)開放基金項目(kfjj20190516)


Apple Detection Method Based on Light-YOLOv3 Convolutional Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為使蘋果采摘機器人在復(fù)雜果樹背景下能快速準(zhǔn)確地檢測出蘋果,提出一種輕量化YOLO(You only look once)卷積神經(jīng)網(wǎng)絡(luò)(Light-YOLOv3)模型與蘋果檢測方法。首先,對傳統(tǒng)YOLOv3深度卷積神經(jīng)網(wǎng)絡(luò)架構(gòu)進行改進,設(shè)計一種同構(gòu)殘差塊串聯(lián)的特征提取網(wǎng)絡(luò)結(jié)構(gòu),簡化目標(biāo)檢測的特征圖尺度,采用深度可分離卷積替換普通卷積,提出一種融合均方誤差損失和交叉熵損失的多目標(biāo)損失函數(shù);其次,開發(fā)爬蟲程序,從互聯(lián)網(wǎng)上獲取訓(xùn)練數(shù)據(jù)并進行標(biāo)注,采用數(shù)據(jù)增強技術(shù)對訓(xùn)練數(shù)據(jù)進行擴充,并對數(shù)據(jù)進行歸一化,針對Light-YOLOv3網(wǎng)絡(luò)訓(xùn)練,提出一種基于隨機梯度下降(Stochastic gradient descent,SGD)和自適應(yīng)矩估計(Adaptive moment estimation,Adam)的多階段學(xué)習(xí)優(yōu)化技術(shù);最后,分別在計算機工作站和嵌入式開發(fā)板上進行了復(fù)雜果樹背景下的蘋果檢測實驗。結(jié)果表明,基于輕量化YOLOv3網(wǎng)絡(luò)的蘋果檢測方法在檢測速度和準(zhǔn)確率方面均有顯著的提高,在工作站和嵌入式開發(fā)板上的檢測速度分別為116.96、7.59f/s,F(xiàn)1值為94.57%,平均精度均值(Mean average precision,mAP)為94.69%。

    Abstract:

    An apple detection method (Light-YOLOv3) based on lightweight YOLO (You only look once) convolutional neural network was proposed for apple picking robots to detect apples quickly and accurately in the complex background of fruit trees. Firstly, in order to improve the traditional YOLOv3 deep convolutional neural network architecture, a feature extraction network structure containing cascaded homogeneous residual blocks was designed, and the dimensionality of the feature map for object detection was simplified. In this architecture, the conventional convolution was replaced by the depth wise separable convolution, and a multiobjective loss function was defined in terms of the mean square error loss and the cross entropy loss. Secondly, the training data was obtained from the Internet by means of a crawler program, and then labelled. The data augmentation technique was used to expand the training data and normalize it. Thirdly, a multistage learning optimization approach based on stochastic gradient descent (SGD) and adaptive moment estimation (Adam) was proposed to train Light-YOLOv3 network. Finally, an apple detection experiment in the complex background of fruit trees was performed on a computer workstation and an embedded processor, respectively. The experimental results showed that the apple detection method based on Light-YOLOv3 network improved the detection speed and accuracy significantly, i.e., the detection speed on the computer workstation and the embedded processor can reach 116.96f/s, 7.59f/s, F1 value can reach 9457%, and the mean average precision (mAP) can reach 94.69%.

    參考文獻
    相似文獻
    引證文獻
引用本文

武星,齊澤宇,王龍軍,楊俊杰,夏雪.基于輕量化YOLOv3卷積神經(jīng)網(wǎng)絡(luò)的蘋果檢測方法[J].農(nóng)業(yè)機械學(xué)報,2020,51(8):17-25. WU Xing, QI Zeyu, WANG Longjun, YANG Junjie, XIA Xue. Apple Detection Method Based on Light-YOLOv3 Convolutional Neural Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(8):17-25.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-12-03
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-08-10
  • 出版日期: 2020-08-10