亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于YOLOv3目標(biāo)檢測(cè)的秧苗列中心線提取方法
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

廣東省省級(jí)科技計(jì)劃項(xiàng)目(2014A020208018)


Extraction Method for Centerlines of Rice Seedings Based on YOLOv3 Target Detection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)秧苗列中心線的檢測(cè)結(jié)果易受到水田中的浮萍、藍(lán)藻以及水面反射、風(fēng)速、光照情況等自然條件影響的問題,提出一種基于YOLOv3目標(biāo)檢測(cè)的秧苗列中心線檢測(cè)算法?;谕敢曂队坝?jì)算提取圖像的ROI(Region of interest)區(qū)域,采用ROI圖像構(gòu)建數(shù)據(jù)集,對(duì)YOLOv3模型進(jìn)行訓(xùn)練,訓(xùn)練過程中通過減少YOLOv3模型的輸出降低運(yùn)算量,利用模型識(shí)別定位ROI內(nèi)的秧苗,并輸出其檢測(cè)框,對(duì)同列秧苗的檢測(cè)框進(jìn)行自適應(yīng)聚類。在對(duì)秧苗圖像進(jìn)行灰度化和濾波處理后,在同類檢測(cè)框內(nèi)提取秧苗SUSAN(Smallest univalue segment assimilating nucleus)角點(diǎn)特征,采用最小二乘法擬合秧苗列中心線。試驗(yàn)結(jié)果表明,該算法對(duì)于秧苗的不同生長時(shí)期,以及在大風(fēng)、藍(lán)藻、浮萍和秧苗倒影、水面強(qiáng)光反射、暗光線的特殊場(chǎng)景下均能成功提取秧苗列中心線,魯棒性較好,模型的平均精度為91.47%,提取的水田秧苗列中心線平均角度誤差為0.97°,單幅圖像(分辨率640像素×480像素)在GPU下的平均處理時(shí)間為82.6ms,能夠滿足視覺導(dǎo)航的實(shí)時(shí)性要求。為復(fù)雜環(huán)境下作物中心線的提取提供了有效技術(shù)途徑。

    Abstract:

    In order to extract the centerlines of rice seedlings, a new method based on YOLOv3 target detection algorithm was presented, which can extract centerlines of different growth stages of rice seedlings in complex paddy field so as to provide guide lines for autonomous navigation of robot. Firstly, an industrial camera which was 1 m high above the ground with pitch angles of 45° to 60° was used to capture image of rice seedlings, and then the region of interest (ROI) of the crop image was determined in order to find the instructive guide lines. Because of the perspective projection, the rice seedlings rows were labeled in segments. Then, the ROI images dataset was built to train YOLOv3 model. After that, the best YOLOv3 model was used to detect the rice seedling in the ROI and output bounding boxes. Secondly, the bounding boxes of the same rice seedlings row was clustered. Thirdly, image segmentation was applied and the smallest univalue segment assimilating nucleus (SUSAN) feature points was extracted within the bounding box of the same cluster. Finally, the least square method was applied in the algorithm to extract the centerlines of rice seedling. For complex paddy field environment such as windy weather, dark light, rice seedlings shadow and light reflection on water surface, as well as the impacts like duckweed and cyanobacteria, the proposed algorithm successfully and accurately extracted the centerlines of rice seedlings. For 200 test images, the mean average precision of trained network reached 91.47%, the mean average angle errors of the extracted centerlines was 0.97° and the average runtime of one image (resolution: 640 pixels×480 pixels) was 82.6ms. Compared with another method for centerlines extracting, this algorithm had higher robustness, higher accuracy and faster runtime. The result showed that the method was real time and had application values.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張勤,王家輝,李彬.基于YOLOv3目標(biāo)檢測(cè)的秧苗列中心線提取方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(8):34-43. ZHANG Qin, WANG Jiahui, LI Bin. Extraction Method for Centerlines of Rice Seedings Based on YOLOv3 Target Detection[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(8):34-43.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-12-09
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-08-10
  • 出版日期: 2020-08-10