亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于并聯(lián)深度信念網(wǎng)絡(luò)的數(shù)控機(jī)床熱誤差預(yù)測(cè)方法
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金面上項(xiàng)目(51775074)、重慶市重點(diǎn)產(chǎn)業(yè)共性關(guān)鍵技術(shù)創(chuàng)新重點(diǎn)研發(fā)項(xiàng)目(cstc2017zdcy-zdyfX0066、cstc2017zdcy-zdyfX0073)、重慶市技術(shù)創(chuàng)新與應(yīng)用示范重點(diǎn)項(xiàng)目(cstc2018jszx-cyzdX0144)和重慶市基礎(chǔ)研究與前沿探索項(xiàng)目(cstc2018jcyjAX0352)


Thermal Error Prediction Method of CNC Machine Tools Based on Parallel Depth Belief Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)基于傳統(tǒng)淺層網(wǎng)絡(luò)理論的熱誤差數(shù)學(xué)模型存在適應(yīng)性、魯棒性差的問題,提出一種基于并聯(lián)深度信念網(wǎng)絡(luò)的數(shù)控機(jī)床熱誤差預(yù)測(cè)與補(bǔ)償方法。建立一種基于3個(gè)子深度信念網(wǎng)絡(luò)并聯(lián)的深度學(xué)習(xí)預(yù)測(cè)模型,各子深度信念網(wǎng)絡(luò)具有相同的網(wǎng)絡(luò)結(jié)構(gòu)、不同的權(quán)值參數(shù),并共享輸入層的限制玻爾茲曼機(jī);構(gòu)建基于預(yù)測(cè)誤差的并聯(lián)深度網(wǎng)絡(luò)結(jié)構(gòu),確定每個(gè)RBM隱含層的神經(jīng)元數(shù)量;提出初始權(quán)值共享的并聯(lián)深度網(wǎng)絡(luò)訓(xùn)練方法,采用對(duì)數(shù)散度無監(jiān)督學(xué)習(xí)方法預(yù)訓(xùn)練模型中的1個(gè)深度信念網(wǎng)絡(luò),其他深度信念網(wǎng)絡(luò)共享該初始權(quán)值,并用反向傳播算法分別微調(diào)生成各子深度信念網(wǎng)絡(luò)的最優(yōu)權(quán)值。實(shí)驗(yàn)結(jié)果表明,預(yù)測(cè)的主軸熱誤差均方根誤差為2.2μm,在提高預(yù)測(cè)準(zhǔn)確性的同時(shí),顯著提高了熱誤差補(bǔ)償?shù)倪m應(yīng)性和魯棒性。

    Abstract:

    It is difficult to establish the accurate mapping relationship between thermal error and temperature of machine tools. Aimed at the problems of adaptability and robustness of the thermal error model based on the traditional shallow network, a method of thermal error prediction and compensation based on parallel deep learning network was proposed. A deep learning prediction model based on three sub depth belief networks in parallel was established. Each sub depth belief network had the same network structure and different weight parameters. And the restricted Boltzmann machine of the input layer was shared to each sub depth belief network. A construction method of the parallel depth network structure based on prediction error was designed to determine the number of neurons in each RBM hidden layer. A parallel depth network training method based on initial weight sharing was proposed. One of the depth belief networks of the model was pretrained based on the unsupervised learning method with logarithmic divergence. Other depth belief networks shared the initial weight. And the backpropagation algorithm was used to further adjust the optimal weights of each sub depth belief network. The experimental results showed that the root mean square error of thermal error model based on parallel deep learning network was 2.2μm. This method improved the adaptability and robustness of thermal error compensation greatly while improving the accuracy of prediction.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

杜柳青,余永維.基于并聯(lián)深度信念網(wǎng)絡(luò)的數(shù)控機(jī)床熱誤差預(yù)測(cè)方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(8):414-419. DU Liuqing, YU Yongwei. Thermal Error Prediction Method of CNC Machine Tools Based on Parallel Depth Belief Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(8):414-419.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-11-19
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-08-10
  • 出版日期: 2020-08-10