亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于遷移學(xué)習(xí)的溫室番茄葉片水分脅迫診斷方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2019YFD1001903、2016YED0201003)


Water Stress Diagnosis Algorithm of Greenhouse Tomato Based on Fine-tuning Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為實(shí)時(shí)診斷番茄葉片水分脅迫程度,提出一種葉片水分脅迫程度的診斷方法,該診斷方法包括2部分:葉片分割和水分脅迫程度分類。采用以ResNet101為特征提取卷積網(wǎng)絡(luò)的Mask R-CNN網(wǎng)絡(luò)對背景遮擋的番茄葉片進(jìn)行實(shí)例分割,通過遷移學(xué)習(xí)將Mask R-CNN在COCO數(shù)據(jù)集上預(yù)訓(xùn)練得到的權(quán)重用于番茄葉片的實(shí)例分割,保留原卷積網(wǎng)絡(luò)的訓(xùn)練參數(shù),只調(diào)整全連接層。利用卷積網(wǎng)絡(luò)提取的特征,可將番茄葉片分割視為區(qū)分葉片與背景的一個(gè)二分類問題,以此來分割受到不同水分脅迫的番茄葉片圖像。利用微調(diào)后的DenseNet169圖像分類模型進(jìn)行葉片水分脅迫程度分類,通過遷移學(xué)習(xí)將DenseNet169在ImageNet數(shù)據(jù)集上預(yù)訓(xùn)練得到的權(quán)重用于番茄葉片水分脅迫程度的分類,保持DenseNet169卷積層的參數(shù)不變,只訓(xùn)練全連接層,并對原DenseNet169全連接層進(jìn)行了修改,將分類數(shù)量從1.000修改為3。試驗(yàn)共采集特征明顯的無水分脅迫、中度脅迫和重度脅迫3類溫室番茄葉片圖像,共2000幅圖像,建立數(shù)據(jù)集,并進(jìn)行模型訓(xùn)練與測試。試驗(yàn)結(jié)果表明,訓(xùn)練后的Mask R-CNN葉片實(shí)例分割模型在測試集上對于單葉片和多葉片的馬修斯相關(guān)系數(shù)平均為0.798,分割準(zhǔn)確度平均可達(dá)到94.37%。經(jīng)過DenseNet169網(wǎng)絡(luò)訓(xùn)練的葉片水分脅迫程度分類模型在測試集上的分類準(zhǔn)確率為94.68%,與 VGG-19、AlexNet這2種常用的深度學(xué)習(xí)分類模型進(jìn)行對比,分類準(zhǔn)確率分別提高了5.59、14.68個(gè)百分點(diǎn),表明本文方法對溫室番茄葉片水分脅迫程度實(shí)時(shí)診斷有較好的效果,可為構(gòu)建智能化的水脅迫分析技術(shù)提供參考。

    Abstract:

    Leaf water stress degree of real-time diagnosis was one of the methods of scientific irrigation. A kind of leaf water stress degree classification method was putted forward, for feature extraction based on ResNet101 convolution Mask R-CNN networks, the blade was firstly divided, through the study of the migration Mask R-CNN on pre training to get the weight of COCO data set for instance segmentation of tomato leaves, the original convolution network training parameters were retained, and only the connection layer was adjusted. By using the features extracted from the convolutional network, tomato leaf segmentation could be regarded as a dichotomy problem to distinguish the leaf from the background, so as to segment tomato leaf images under different water stresses. Then after using the fine-tuning DenseNet169 leaf water stress degree classification image classification model, through the study of the migration DenseNet169 ImageNet data set for the training to get the weight for the classification of tomato leaf water stress degree, remain unchanged, the parameters of DenseNet169 convolution only trained the last fully connection layer, and modified the original DenseNet169 fully connection layer, amended the classification number from 1000 to 3. In the experiment, a total of 2000 images were collected of leaves of greenhouse tomatoes with obvious characteristics, including no water stress, moderate stress and severe stress. A data set was established and the model was trained and tested. Experimental results showed that the average Mathews correlation coefficient (MCC) of the Mask R-CNN blade instance segmentation model after training was 0.798 for single and multiple leaves on the test set, and the average accuracy (ACC) could reach 94.37%. After training of DenseNet169 leaf water stress, the degree of accuracy of classification model on the test set was 94.68%, and compared with that of the VGG-19 and AlexNet, the classification model accuracy was increased by 5.59 percentage points and 14.68 percentage points, respectively, and the average operation time of method to detect a 2 million-pixel image was 1.2s, but it had good effect on greenhouse tomato leaf water stress degree real-time diagnosis, which could provide reference for building intelligent technology to water stress analysis.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

趙奇慧,李莉,張淼,藍(lán)天,SIGRIMIS N A.基于遷移學(xué)習(xí)的溫室番茄葉片水分脅迫診斷方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(s1):340-347,356. ZHAO Qihui, LI Li, ZHANG Miao, LAN Tian, SIGRIMIS N A. Water Stress Diagnosis Algorithm of Greenhouse Tomato Based on Fine-tuning Learning[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(s1):340-347,356.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-08-10
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-11-10
  • 出版日期:
文章二維碼