亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于卷積神經(jīng)網(wǎng)絡(luò)的大白母豬發(fā)情行為識(shí)別方法研究
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFD0700204)


Recognition Method of Large White Sow Oestrus Behavior Based on Convolutional Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)現(xiàn)有發(fā)情檢測(cè)方法靈敏度低、識(shí)別時(shí)間長(zhǎng)、易受外界干擾等缺點(diǎn),根據(jù)大白母豬試情時(shí)雙耳豎立的特征,提出一種基于卷積神經(jīng)網(wǎng)絡(luò)(Convolutional neural network, CNN)的大白母豬發(fā)情行為識(shí)別方法。首先通過采集公豬試情時(shí)發(fā)情大白母豬與未發(fā)情大白母豬的耳部圖像,劃分訓(xùn)練集樣本(80%)與驗(yàn)證集樣本(20%)用于后期訓(xùn)練。隨后,基于AlexNet卷積神經(jīng)網(wǎng)絡(luò)構(gòu)建分類模型(AlexNet_Sow),并對(duì)該模型的網(wǎng)絡(luò)結(jié)構(gòu)進(jìn)行簡(jiǎn)化,簡(jiǎn)化后的模型包含2個(gè)卷積模塊和2個(gè)全連接模塊,選擇修正線性單元(Rectified linear units, ReLU)作為激活函數(shù),用自適應(yīng)矩估計(jì)(Adaptive moment estimation, Adam)方法優(yōu)化梯度下降,選擇Softmax作為網(wǎng)絡(luò)分類器,通過結(jié)合增強(qiáng)學(xué)習(xí)的方法對(duì)模型進(jìn)行訓(xùn)練,得到模型應(yīng)用于驗(yàn)證集的準(zhǔn)確率達(dá)到99%。此外,設(shè)定了發(fā)情鑒定的時(shí)間閾值,并結(jié)合LabVIEW的Python節(jié)點(diǎn)用于模型應(yīng)用。當(dāng)公豬試情時(shí),大白母豬雙耳豎立時(shí)長(zhǎng)達(dá)到76s時(shí),則可判定其為發(fā)情。該方法對(duì)大白母豬發(fā)情識(shí)別的精確率、召回率與準(zhǔn)確率分別為100%、83.33%、93.33%,平均單幅圖像的檢測(cè)時(shí)間為26.28ms。該方法能夠?qū)崿F(xiàn)大白母豬發(fā)情的無接觸自動(dòng)快速檢測(cè),準(zhǔn)確率高,大大降低了豬只應(yīng)激情況和人工成本。

    Abstract:

    Timely monitoring of sow oestrus is very important in sow breeding. Recently, recognition methods of sow oestrus are low sensitivity, wasting time and usually affected by environment. To resolve these problems, based on ear erect behavior of large white pigs during estrus, a method of large white sow’s oestrus behavior recognition based on convolutional neural network (CNN) was proposed. A model based on AlexNet convolutional neural network, named AlexNet_Sow was firstly developed. Then, AlexNet_Sow model was simplified to get a new model named AlexNet_Sow_Simplified, which contained two convolution modules and two fully connected modules. The activation function of AlexNet_Sow_Simplified was rectified linear units (ReLU), adaptive moment estimation (Adam) was used to optimize gradient descent, and softmax was used to be the classifier of our model. Ear images of oestrus and non-oestrus large white sows were collected and divided into training data (80%) and testing data (20%). The model was trained by using data augmentation method, the accuracy of testing data was 99%. In addition, it was found that when sows’ ears were erect for 76s during teasing, it could be judged as the symbol of oestrus. In order to verify this method, LabVIEW Python nodes were used to intergrate the AlexNet_Sow_Simplified model and set a time threshold of 76s and verified a set of new photos. The result showed that the precision rate, recall rate and accuracy rate of this method to recognize sow oestrus were 100%, 83.33%, and 93.33%, respectively. The average detecting time of a single image was 26.28ms. It proved that this method could achieve noncontact, automatic, and fast detecting of oestrus in large white sows with high accuracy, which could greatly help to reduce sows’stress and the labor cost.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

莊晏榕,余炅樺,滕光輝,曹孟冰.基于卷積神經(jīng)網(wǎng)絡(luò)的大白母豬發(fā)情行為識(shí)別方法研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(s1):364-370. ZHUANG Yanrong, YU Jionghua, TENG Guanghui, CAO Mengbing. Recognition Method of Large White Sow Oestrus Behavior Based on Convolutional Neural Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(s1):364-370.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-07-30
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-11-10
  • 出版日期:
文章二維碼