亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于數(shù)據(jù)平衡深度學習的不同成熟度冬棗識別
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(41674037、32073029、31872849)、山東省研究生教育質(zhì)量提升計劃項目(SDYJG19134)、山東省重點研發(fā)項目(2019GNC106037)和山東省大數(shù)據(jù)驅(qū)動的復雜系統(tǒng)安全控制技術(shù)重點實驗室(籌)開放基金項目(SKDK202002)


Recognition Approach Based on Data-balanced Faster R-CNN for Winter Jujube with Different Levels of Maturity
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為解決不同成熟度冬棗的樣本數(shù)量相差懸殊導致的識別率低的問題,本文提出了一種基于數(shù)據(jù)平衡的Faster R-CNN的冬棗識別方法。該方法針對自然環(huán)境下不同成熟度的冬棗,首先從不同角度進行了數(shù)據(jù)平衡的Faster R-CNN冬棗識別方法研究,然后將所提出的方法與基于YOLOv3的識別方法進行了對比試驗研究。研究結(jié)果表明:所提出的數(shù)據(jù)平衡的Faster R-CNN方法在樣本數(shù)量不足和類別不平衡的情況下,增強了模型的泛化效果,對片紅冬棗識別的平均精確度達到了98.50%,總損失值小于0.5,其識別平均精確度高于YOLOv3。該研究對解決冬棗自動化和智能化采摘的識別問題具有一定的實際意義和應用價值。

    Abstract:

    Winter jujube has the characteristics of thin peel and crisp flesh, and winter jujube can only be picked by hand at present, so it is urgent to solve the problem of automatic and intelligent picking of winter jujube. Whereas, the recognition of winter jujube is the premise and foundation to solve this problem. In order to solve the problem of low recognition rate caused by the large number difference of samples with different levels of maturity, this paper proposes a recognition approach based on data-balanced Faster R-CNN for winter jujube. For the winter jujube with different levels of maturity in natural environment, this paper researches the Faster R-CNN recognition approach with data balance from different angles, and then the proposed method is compared with the recognition approach based on YOLOv3. The results show that: the proposed data-balanced Faster R-CNN method enhances the generalization effect of the model in the case of insufficient samples and unbalanced categories;the average recognition accuracy of the proposed approach is 98.50% which is higher than YOLOv3, and the total loss is less than 0.5. What’s more, the feature extraction of the foreground image is not obvious because the distance is far between the lens and the foreground image, which will reduce the recognition accuracy of the overall data set. This research has certain practical significance and application value for solving the recognition problem of automatic and intelligent picking winter jujube.

    參考文獻
    相似文獻
    引證文獻
引用本文

王鐵偉,趙瑤,孫宇馨,楊然兵,韓仲志,李娟.基于數(shù)據(jù)平衡深度學習的不同成熟度冬棗識別[J].農(nóng)業(yè)機械學報,2020,51(s1):457-463,492. WANG Tiewei, ZHAO Yao, SUN Yuxin, YANG Ranbing, HAN Zhongzhi, LI Juan. Recognition Approach Based on Data-balanced Faster R-CNN for Winter Jujube with Different Levels of Maturity[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(s1):457-463,492.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-08-10
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-11-10
  • 出版日期:
文章二維碼