亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于自適應(yīng)字典的小樣本高光譜圖像分類(lèi)方法
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFD0301105)和河南省科技攻關(guān)項(xiàng)目(192102110196)


Hyperspectral Image Classification Method with Small Sample Set Based on Adaptive Dictionary
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    在有限標(biāo)記樣本下,為了有效協(xié)同空譜信息提高高光譜圖像的分類(lèi)性能,提出了一種基于自適應(yīng)字典的小樣本高光譜圖像分類(lèi)方法。首先,對(duì)高光譜圖像進(jìn)行熵率超像素分割,分析標(biāo)記樣本的超像素區(qū)域和光譜近鄰,將鑒別力高的樣本擴(kuò)展至標(biāo)記樣本集;然后,在擴(kuò)展的標(biāo)記樣本集上分析測(cè)試樣本的空譜信息,對(duì)不同的測(cè)試樣本精簡(jiǎn)標(biāo)記樣本集,形成自適應(yīng)字典;最后,在自適應(yīng)字典上,協(xié)同空譜信息重構(gòu)測(cè)試樣本,在協(xié)同表示中同時(shí)考慮重構(gòu)字典中空譜信息的競(jìng)爭(zhēng)性。實(shí)驗(yàn)結(jié)果表明,對(duì)比傳統(tǒng)的基于光譜的方法和固定窗口尺寸下融合空譜特征的高光譜圖像分類(lèi)方法,在印地安農(nóng)林?jǐn)?shù)據(jù)集上,當(dāng)訓(xùn)練樣本數(shù)目?jī)H為樣本集數(shù)目2%時(shí),本文方法總體分類(lèi)精度為91.45%,比其他方法高3.48~39.52個(gè)百分點(diǎn);在訓(xùn)練樣本數(shù)為1%的帕維亞大學(xué)數(shù)據(jù)集上,該方法的總體分類(lèi)精度達(dá)到95.54%,比其他方法高2.45~21.63個(gè)百分點(diǎn),驗(yàn)證了本文方法的有效性。

    Abstract:

    To effectively utilize the spectral and spatial information of limited labeled training samples in hyperspectral image (HSI) classification, a HSI classification approach with small sample set based on adaptive dictionary was proposed. Firstly, discriminating pixels of each labeled sample were extracted from spatial information with entropy rate segmented superpixels and spectral neighborhood, the training set was then extended by adding the discriminating pixels. Furthermore, the spatial-spectral information of each test sample was analyzed, and its adaptive dictionary was constructed by simplifying the extended training sample set. Finally, the spatial-spectral reconstruction was performed on the adaptive dictionary of each test pixel, where the collaboration and competition among dictionary elements were both considered. To evaluate the performance of the proposed approach, it was compared with some traditional methods by using spectral information and the state-of-the-art methods incorporated traditional information of fixed window size, experimental results on Indian Pines dataset with only 2% training set demonstrated that the overall accuracy of the proposed approach was 91.45%, which was 3.48~39.52 percentage points higher than that of other methods, and the results on Pavia University HSI with 1% training set showed that the overall accuracy of the proposed approach reached 95.54%, which was 2.45~21.63 percentage points higher than that of others, indicating the effectiveness of the proposed approach.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

虎曉紅,司海平.基于自適應(yīng)字典的小樣本高光譜圖像分類(lèi)方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(1):154-161. HU Xiaohong, SI Haiping. Hyperspectral Image Classification Method with Small Sample Set Based on Adaptive Dictionary[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(1):154-161.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-04-16
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-01-10
  • 出版日期:
文章二維碼