亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于深層殘差網(wǎng)絡(luò)的山區(qū)DEM超分辨率重構(gòu)
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(41771315、41501294)、國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFC0403203)和西北農(nóng)林科技大學(xué)博士啟動(dòng)基金項(xiàng)目(Z1090219191)


Super-resolution Reconstruction of DEM in Mountain Area Based on Deep Residual Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)大區(qū)域高分辨率數(shù)字高程模型(DEM)數(shù)據(jù)較難獲取、超分辨率重構(gòu)(降尺度)較低分辨率的DEM精度不高、難以滿足實(shí)際需要的問題,提出一種對(duì)起伏特征較明顯的山區(qū)DEM超分辨率重構(gòu)的方法。利用較深層的神經(jīng)網(wǎng)絡(luò)充分學(xué)習(xí)高低分辨率DEM之間的非線性映射關(guān)系;為了降低訓(xùn)練難度,結(jié)合殘差學(xué)習(xí)的方法進(jìn)行數(shù)據(jù)訓(xùn)練。將雙立方插值法、稀疏混合估計(jì)法重構(gòu)的DEM及提取的坡度結(jié)果分別同深層殘差網(wǎng)絡(luò)法的結(jié)果進(jìn)行對(duì)比,結(jié)果表明,3種方法DEM結(jié)果的差值平均值分別為0.41、0.34、0.34m,RMSE分別為0.5945、0.5715、0.4869m;坡度結(jié)果的差值平均值分別為3.02°、2.04°、1.99°,RMSE分別為3.6498°、3.1360°、2.7387°;處理時(shí)間分別為0.052、663.39、2.16s。研究表明,對(duì)于10、20、40m的DEM,本文方法在空間分布和誤差方面優(yōu)于其他方法,在耗時(shí)效率上也優(yōu)于稀疏混合估計(jì)法,適合應(yīng)用于梯田等地形復(fù)雜的區(qū)域進(jìn)行超分辨率重構(gòu)。

    Abstract:

    High-resolution digital elevation model(DEM) in large districts is difficult to be acquired due to the limitation of cost and technology. Usually, it can be obtained by super-resolution reconstruction(downscale) from low-resolution DEM. However, the accuracy of the DEM generated by conventional downscale methods is insufficient. With the development of image downscale, convolutional neural network(CNN) has achieved success. To improve DEM accuracy, a very deep convolutional networks super-resolution method(VDSR)was designed to reconstruct the terrace DEM with obvious undulation characteristics. The deep neural network was used to learn nonlinear mapping between high-resolution DEM and low-resolution DEM, at the same time, residual learning method were used to reduce training difficulty. In order to compare, bicubic interpolation method, sparse mixed estimation method and VDSR method were used to reconstruct the DEM and slope. The slope data were extracted from the DEM results. The mean value of DEM difference of three methods were 0.41m, 0.34m and 0.34m, respectively. The RMSE of DEM were 0.5945m, 0.5715m and 0.4869m, respectively. The mean value of slope difference of three methods were 3.02°, 2.04° and 1.99°, respectively. The RMSE of slope were 3.6498°, 3.1360° and 2.7387°, respectively. The running time were 0.052s, 663.39s and 2.16s, respectively. By comprehensive comparison, for 10m, 20m and 40m DEM, the result showed that VDSR method had great advantage in spatial distribution, error and running time, and it was suitable for super-resolution reconstruction in areas with complex terrain such as terrace.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張宏鳴,全凱,楊亞男,楊江濤,陳歡,郭偉玲.基于深層殘差網(wǎng)絡(luò)的山區(qū)DEM超分辨率重構(gòu)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(1):178-184. ZHANG Hongming, QUAN Kai, YANG Ya’nan, YANG Jiangtao, CHEN Huan, GUO Weiling. Super-resolution Reconstruction of DEM in Mountain Area Based on Deep Residual Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(1):178-184.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-03-14
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-01-10
  • 出版日期:
文章二維碼