亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于深度語義分割的無人機(jī)多光譜遙感作物分類方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFC0403203)、中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金項(xiàng)目(2452019180)和陜西省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2020NY-098)


Crop Classification Method of UVA Multispectral Remote Sensing Based on Deep Semantic Segmentation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為精準(zhǔn)獲取農(nóng)田作物種植分布信息以滿足農(nóng)業(yè)精細(xì)化管理需求,基于DeepLab V3+深度語義分割網(wǎng)絡(luò)提出了一種面向無人機(jī)多光譜遙感影像的農(nóng)田作物分類方法。通過修改輸入層結(jié)構(gòu)、融合多光譜信息和植被指數(shù)先驗(yàn)信息、并采用Swish激活函數(shù)優(yōu)化模型,使網(wǎng)絡(luò)在響應(yīng)值為負(fù)時(shí)仍能反向傳播?;?018—2019年連續(xù)2年內(nèi)蒙古自治區(qū)河套灌區(qū)沙壕渠灌域的無人機(jī)多光譜遙感影像,在2018年數(shù)據(jù)集上構(gòu)建并訓(xùn)練模型,在2019年數(shù)據(jù)集上測試模型的泛化性能。結(jié)果表明,改進(jìn)的DeepLab V3+模型平均像素精度和平均交并比分別為93.06%和87.12%,比基于人工特征的支持向量機(jī)(Support vector machine, SVM)方法分別提高了17.75、20.8個(gè)百分點(diǎn),比DeepLab V3+模型分別提高了2.56、2.85個(gè)百分點(diǎn),獲得了最佳的分類性能,且具有較快的預(yù)測速度。采用本文方法能夠從農(nóng)田作物遙感影像中學(xué)習(xí)到表達(dá)力更強(qiáng)的語義特征,從而獲得準(zhǔn)確的作物分類結(jié)果,為利用無人機(jī)遙感影像解譯農(nóng)田類型提供了一種新的方法。

    Abstract:

    In order to accurately obtain the field crop planting distribution information to satisfy the needs of refining the management of agriculture, a field crop classification method was proposed for unmanned aerial vehicle (UAV) multispectral remote sensing images based on DeepLab V3+ network. In which the structure of the input layer was modified to fuse multispectral information with the prior features of vegetation indexes, and the activation function of Swish was adopted to maintain the backpropagation capability of the model when the response was a negative value. The research region was Shahaoqu irrigation field in the Hetao Irrigation District, Inner Mongolia Autonomous Region, whose UAV multispectral remote sensing images collected in 2018 and 2019 were taken as samples. The classification model was constructed and trained on the data of 2018, and the generalization performance of the model was tested on the data of 2019. The experimental results showed that the improved DeepLab V3+ model got excellent classification with fast speed. Its mean pixel accuracy and mean intersection over union were 93.06% and 87.12%, respectively, which were 17.75 percentage points and 20.8 percentage points higher than those of the traditional support vector machine (SVM) method using artificial features, and 2.56 percentage points and 2.85 percentage points higher than those of the original DeepLab V3+ model. Therefore, this method can learn more expressive semantic features from the field crop remote sensing images, thus obtaining accurate crop classification. The research result provided a new technical basis for the interpretation of farmland types using UAV remote sensing images.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

楊蜀秦,宋志雙,尹瀚平,張智韜,寧紀(jì)鋒.基于深度語義分割的無人機(jī)多光譜遙感作物分類方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(3):185-192. YANG Shuqin, SONG Zhishuang, YIN Hanping, ZHANG Zhitao, NING Jifeng. Crop Classification Method of UVA Multispectral Remote Sensing Based on Deep Semantic Segmentation[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(3):185-192.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-05-21
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-03-10
  • 出版日期: