亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于YOLOv4的豬只飲食行為檢測(cè)方法
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金面上項(xiàng)目(31772651)和山西省重點(diǎn)研發(fā)計(jì)劃專項(xiàng)(農(nóng)業(yè))(201803D221028-7)


Pig Diet Behavior Detection Method Based on YOLOv4
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)豬舍環(huán)境下豬只飲食行為自動(dòng)化檢測(cè)程度較低的問(wèn)題,提出了一種基于YOLOv4的豬只飲食行為檢測(cè)模型。基于多時(shí)間段、多視角和不同程度遮擋的豬只飲食圖像,建立了豬只飲食行為圖像數(shù)據(jù)庫(kù),利用YOLOv4深度學(xué)習(xí)網(wǎng)絡(luò)的深層次特征提取、高精度檢測(cè)分類特性,對(duì)豬只飲食行為進(jìn)行檢測(cè)。結(jié)果表明,基于YOLOv4的豬只飲食行為檢測(cè)模型在不同視角、不同遮擋程度以及不同光照下均能準(zhǔn)確預(yù)測(cè)豬只的飲食行為,在測(cè)試集中平均檢測(cè)精度(mAP)達(dá)到95.5%,分別高于YOLOv3、Tiny-YOLOv4模型2.8、3.6個(gè)百分點(diǎn),比Faster R-CNN模型高1.5個(gè)百分點(diǎn),比RetinaNet、SSD模型高5.9、5個(gè)百分點(diǎn)。本文方法可為智能養(yǎng)豬與科學(xué)管理提供技術(shù)支撐。

    Abstract:

    It is of vital significance to detect pig’s eating and drinking behavior by using intelligent method, and analyze the law of eating and drinking water, which plays an important role in early warning of pig disease and maintaining pig welfare. Pig diet behavior detection model based on YOLOv4 was proposed. Aiming at the pig diet image with multi time period, multi view angle and different degrees of occlusion, the database of pig eating behavior image was established. The in-depth feature extraction and high-precision detection classification characteristics of YOLOv4 deep learning network were used to accurately detect pig eating behavior. The results from the whole experiments showed that the model based on YOLOv4 can accurately predict the diet behavior of pigs in different angles of view, different degrees of occlusion and different illuminations. The average detection accuracy (mAP) was 95.5%, which was 2.8 percentage points and 3.6 percentage points higher than that of the same series of YOLOv3 and Tiny-YOLOv4 models, 1.5 percentage points higher than that of Faster R-CNN model, 5.9 percentage points higher than that of RetinaNet model and 5 percentage points higher than that of SSD model. This method can accurately predict the occurrence of pig eating behavior and provide targeted and adaptive technical support for pig intelligent breeding and management.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李菊霞,李艷文,牛帆,李榮,張韜,景冰.基于YOLOv4的豬只飲食行為檢測(cè)方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(3):251-256. LI Juxia, LI Yanwen, NIU Fan, LI Rong, ZHANG Tao, JING Bing. Pig Diet Behavior Detection Method Based on YOLOv4[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(3):251-256.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-09-16
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-03-10
  • 出版日期: