亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于改進VGG16的大米加工精度分級方法研究
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

蘇北科技專項-富民強縣項目(SZ-YC2019002)


Rice Processing Accuracy Classification Method Based on Improved VGG16 Convolution Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了準確識別大米精度等級,結(jié)合超列技術(shù)(Hyper column technology,HCT)、最大相關(guān)-最小冗余(Max-relevance and min-redundancy,MRMR)特征選擇算法和極限學(xué)習(xí)機(Extreme learning machine,ELM),提出了基于改進VGG16卷積神經(jīng)網(wǎng)絡(luò)的大米分級檢測方法。首先,使用機器學(xué)習(xí)中的OneHot格式進行編碼,對數(shù)據(jù)進行歸一化;然后采用VGG16卷積神經(jīng)網(wǎng)絡(luò)結(jié)合HCT技術(shù)作為特征提取器,從而保證從不同的深層結(jié)構(gòu)中提取出局部鑒別特征,共提取5248個大米特征信息;采用MRMR特征選擇算法剔除大量冗余的大米圖像特征,篩選出最有效的500個特征;最后,利用ELM技術(shù)進行大米加工精度分級。將5848個樣本圖像按6∶3∶1的比例隨機分為訓(xùn)練集、測試集與驗證集,對模型進行訓(xùn)練與測試,結(jié)果表明,基于改進VGG16卷積神經(jīng)網(wǎng)絡(luò)的大米加工精度分級模型對1755個測試集大米樣本分類的總體準確率達到97.32%,對大米加工精度的分級預(yù)測速度在85t/h以上,基本滿足大米生產(chǎn)線的分級要求。

    Abstract:

    Classification of rice processing precision is an important link in rice processing. In order to accurately identify the grade of rice processing precision, by combining the hyper column technology (HCT), max-relevance and min-redundancy (MRMR) feature selection algorithm and extreme learning machine (ELM) technique, an improved VGG16 convolutional neural network was proposed. First of all, the OneHot format in machine learning was used for coding and normalization of data;then, combining HCT, the VGG16 convolutional neural network was used as the feature extractor, which can extract local differentiating features from deep structure at different levels. Totally 5248 rice features were extracted, the MRMR feature selection algorithm was employed to eliminate massive redundant rice image features, and 500 most effective features were selected. Finally, the ELM technique was used to classify the processing grade of rice. The 5848 sample images were randomly divided into the training set, test set and verification set according to the ratio of 6∶3∶1 for training and test of model. The results showed that when the rice processing grade classification model built based on the improved VGG16 convolutional neural network was used to classify the 1755 rice samples in the test set, the overall accuracy can reach 97.32%, and the classification prediction speed of rice processing precision can reach approximately 85t/h, which basically satisfied the requirement of rice production line.

    參考文獻
    相似文獻
    引證文獻
引用本文

戚超,左毅,陳哲琪,陳坤杰.基于改進VGG16的大米加工精度分級方法研究[J].農(nóng)業(yè)機械學(xué)報,2021,52(5):301-307. QI Chao, ZUO Yi, CHEN Zheqi, CHEN Kunjie. Rice Processing Accuracy Classification Method Based on Improved VGG16 Convolution Neural Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(5):301-307.

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-06-26
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-05-10
  • 出版日期:
文章二維碼