亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于注意力機(jī)制的時(shí)空卷積數(shù)控機(jī)床熱誤差模型研究
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(51775074)、重慶市重點(diǎn)產(chǎn)業(yè)共性關(guān)鍵技術(shù)創(chuàng)新重點(diǎn)研發(fā)項(xiàng)目(cstc2017zdcy-zdyfX0066、cstc2017zdcy-zdyfX0073)、重慶市技術(shù)創(chuàng)新與應(yīng)用示范重點(diǎn)項(xiàng)目(cstc2018jszx-cyzdX0144)、重慶市基礎(chǔ)研究與前沿探索項(xiàng)目(cstc2018jcyjAX0352)和重慶市研究生科研創(chuàng)新項(xiàng)目(CYS19316)


Spatiotemporal Convolution Thermal Error Model of CNC Machine Tools Based on Attention Mechanism
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為了提高數(shù)控機(jī)床熱誤差模型的精度與泛化性,提出了基于注意力機(jī)制的長(zhǎng)短時(shí)記憶卷積神經(jīng)網(wǎng)絡(luò)(Long short term memory convolutional neural network based on attention mechanism, AM-CNN-LSTM)熱誤差模型。利用卷積神經(jīng)網(wǎng)絡(luò)提取高維數(shù)據(jù)空間狀態(tài)特征的能力和長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)提取長(zhǎng)時(shí)間序列狀態(tài)特征的能力,構(gòu)建具有2個(gè)支路的熱誤差模型,分別提取特征后輸入到注意力機(jī)制中進(jìn)行特征重要性重構(gòu),建立原始數(shù)據(jù)與熱誤差的特征映射,最后通過(guò)全連接層進(jìn)行熱誤差預(yù)測(cè)。采用G460L型數(shù)控機(jī)床進(jìn)行實(shí)驗(yàn)數(shù)據(jù)采集,將不同季節(jié)采集到的溫度數(shù)據(jù)和熱誤差作為模型輸入,采用循環(huán)學(xué)習(xí)率與正則化優(yōu)化方法對(duì)模型進(jìn)行訓(xùn)練。與LSTM、ConvLSTM和CNN-LSTM熱誤差模型對(duì)比,結(jié)果表明,AM-CNN-LSTM模型對(duì)特征還原能力最強(qiáng),殘差波動(dòng)范圍最小,其殘差范圍較最大值下降62.09%,模型預(yù)測(cè)精度在2.4μm以?xún)?nèi)。

    Abstract:

    In order to improve the accuracy and generalization of the thermal error model of CNC machine tools, a thermal error model of and long short term memory convolutional neural network based on attention mechanism (AM-CNN-LSTM) was proposed. A thermal error model with two branches was established by using the ability of convolutional neural networks to extract the space state features of high-dimensional data and the ability of long short term memory networks to extract long-term sequence state features, and the extracted features were input into the attention mechanism to reconstruct according to the importance, and then a feature map of original data and thermal error value was established. Finally, the thermal error prediction value was performed through the full connect layer. The G460L CNC lathe was used to collect experimental data, the temperature and thermal error collected in different seasons were used as the model input, and the model was trained using the cyclic learning rate and regularization optimization method. Compared with the thermal error model of LSTM, ConvLSTM and CNN-LSTM, the results showed that AM-CNN-LSTM model had the strongest ability to restore features and the smallest residual error range. It was decreased by 62.09%, and the prediction accuracy of the model was within 2.4μm.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

杜柳青,李仁杰,余永維.基于注意力機(jī)制的時(shí)空卷積數(shù)控機(jī)床熱誤差模型研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(5):404-411. DU Liuqing, LI Renjie, YU Yongwei. Spatiotemporal Convolution Thermal Error Model of CNC Machine Tools Based on Attention Mechanism[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(5):404-411.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-07-07
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-05-10
  • 出版日期:
文章二維碼