亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

采摘機器人深度視覺伺服手-眼協(xié)調(diào)規(guī)劃研究
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(31971795)、江蘇大學農(nóng)業(yè)裝備學部項目(4111680002)、江蘇省優(yōu)勢學科項目(PAPD-2018-87)和江蘇省研究生創(chuàng)新基金項目(CXZZ12_0693)


Hand-Eye Coordination Planning with Deep Visual Servo for Harvesting Robot
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對現(xiàn)有采摘機器人的識別-采摘精度與效率偏低等問題,開展了采摘機器人深度視覺伺服手-眼協(xié)調(diào)規(guī)劃研究。開發(fā)了在手RealSense深度伺服的小型升降式采摘機器人,進行了采放果的工作空間與姿態(tài)分析,針對“眼在手上”模式建立了手-眼協(xié)調(diào)的坐標變換模型。對采摘機器人提出了基于在手RealSense深度伺服的由遠及近手眼協(xié)調(diào)策略,并根據(jù)RealSense與機械臂參數(shù)完成了基于深度視覺的遠近景協(xié)調(diào)關(guān)鍵點間分段動作規(guī)劃。手眼協(xié)調(diào)采摘試驗表明,末端在X、Y、Z方向的平均定位精度為3.51、2.79、3.35mm,平均耗時為19.24s,其中機械臂從初始位開始采果的平均耗時為12.04s,中間識別與運算的平均耗時為3.82s,放果動作平均耗時為7.2s,機械臂動作耗時占整個環(huán)節(jié)的80.2%。該機器人結(jié)構(gòu)和在手RealSense深度伺服的手眼協(xié)調(diào)策略可滿足采摘作業(yè)需求。

    Abstract:

    Aiming at the low precision and efficiency of the fruit identification and harvesting motion of existing harvesting robots, the hand-eye coordination planning with deep visual servo for harvesting robot was carried out. A small lifting harvesting robot with deep visual servo of RealSense-in-hand was developed, which was composed of the autonomous vehicle, lifting bin, electric fork lifter, grip-cut integrated end-effector, and 3-freedom manipulator. The workspace and posture analysis of fruit picking and placing was performed, and the coordinate transformation model of hand-eye coordination was established for the eye-in-hand mode. Based on the depth visual servo of RealSense-in-hand, the far-to-close hand-eye coordination strategy was proposed for the harvesting robot. The canopy detection from a distance, sub-region division and location, close-range fruit accurate identification and positioning were effectively combined, so that the step-by-step visual guidance of the manipulator was realized. According to the parameters of RealSense and the manipulator, the segmented motion planning between far-to-close key points based on depth vision was completed. It was shown in the hand-eye coordinated harvesting test that, the average positioning accuracy of the end-effector in the X, Y and Z directions was 3.51mm, 2.79mm and 3.35mm, respectively. The average time consuming was 19.24s, which included the motion time of the manipulator from the initial position to picking position (12.04s), the fruit recognition and computing time (3.82s), and the fruit placing time (7.2s). The time of manipulator motion accounted for 80.2% of the whole cycle. Both the robot structure and the hand-eye coordination strategy based on depth visual servo of RealSense-in-hand can meet the needs of fruit harvesting operation.

    參考文獻
    相似文獻
    引證文獻
引用本文

金玉成,高楊,劉繼展,胡春華,周堯,李萍萍.采摘機器人深度視覺伺服手-眼協(xié)調(diào)規(guī)劃研究[J].農(nóng)業(yè)機械學報,2021,52(6):18-25. JIN Yucheng, GAO Yang, LIU Jizhan, HU Chunhua, ZHOU Yao, LI Pingping. Hand-Eye Coordination Planning with Deep Visual Servo for Harvesting Robot[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(6):18-25.

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-04-09
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-06-10
  • 出版日期: 2021-06-10