亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于深層卷積神經(jīng)網(wǎng)絡(luò)的肉兔圖像分割與體質(zhì)量估測
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

財(cái)政部和農(nóng)業(yè)農(nóng)村部:國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系項(xiàng)目(CARS-43-D-2)


Meat Rabbit Image Segmentation and Weight Estimation Model Based on Deep Convolution Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對肉兔飼養(yǎng)管理過程中人工稱量造成的應(yīng)激、體質(zhì)量信息采集困難等問題,提出了一種基于深層卷積神經(jīng)網(wǎng)絡(luò)的肉兔圖像分割與體質(zhì)量估測方法,實(shí)現(xiàn)了肉兔養(yǎng)殖管理中的無接觸式稱量。構(gòu)建基于Mask R-CNN的肉兔圖像分割網(wǎng)絡(luò),以殘差網(wǎng)絡(luò)ResNet101作為主干網(wǎng)絡(luò),利用COCO數(shù)據(jù)集進(jìn)行遷移學(xué)習(xí)以提高訓(xùn)練效率,獲取圍欄中不受限制的肉兔圖像分割結(jié)果。提取每個(gè)樣本掩膜的像素面積,通過引入彎曲度和體長兩個(gè)特征參數(shù)來修正每個(gè)樣本與對應(yīng)體質(zhì)量之間的權(quán)重關(guān)系。以投影面積、彎曲度、體長和日齡為輸入?yún)?shù),以肉兔體質(zhì)量為輸出參數(shù),構(gòu)建6神經(jīng)元的體質(zhì)量估測神經(jīng)網(wǎng)絡(luò)。分別測試肉兔圖像分割網(wǎng)絡(luò)和體質(zhì)量估測神經(jīng)網(wǎng)絡(luò),結(jié)果表明,肉兔圖像分割網(wǎng)絡(luò)在交并比(IoU)為0.5∶0.95時(shí)分類準(zhǔn)確率為94.5%,對像素分割的精確度為95.1%。體質(zhì)量估測神經(jīng)網(wǎng)絡(luò)的擬合相關(guān)系數(shù)R為0.99391,驗(yàn)證集均方誤差為0.0336,預(yù)測體質(zhì)量和實(shí)際體質(zhì)量平均相差123g。本文方法對不同日齡和不同姿態(tài)下肉兔的預(yù)測效果良好。

    Abstract:

    In order to solve the problems in the process of feeding and management of meat rabbits, such as stress caused by manual weighing and difficulty in process of collecting weight information, a method of image segmentation and weight estimation based on deep convolution neural network was proposed, which can realize the contactless weighing of rabbits. A rabbit instance segmentation network based on Mask R-CNN was constructed. The residual network ResNet101 was used as the backbone network, and COCO dataset was used for migration learning to improve the training efficiency and obtain the segmentation results of unrestricted meat rabbits in the fence. Then the pixel area of each sample mask was extracted, and curvature and body length were introduced to modify the weight relationship between each sample and the corresponding weight. Projection area, curvature, body length and age as input parameters and body weight as output parameters, a six neuron weight estimation neural network was constructed to test the rabbit instance segmentation network and weight estimation neural network, the results showed that when IoU was 0.5∶0.95, the classification accuracy of rabbit segmentation network was 94.5%, and the pixel segmentation accuracy was 95.1%. The fitting correlation coefficient R of weight estimation neural network was 0.99391, MSE was 0.0336, and the mean weight error was 123g. The model had a good prediction effect on meat rabbits of different ages and different postures.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

段恩澤,方鵬,王紅英,金楠.基于深層卷積神經(jīng)網(wǎng)絡(luò)的肉兔圖像分割與體質(zhì)量估測[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(6):259-267. DUAN Enze, FANG Peng, WANG Hongying, JIN Nan. Meat Rabbit Image Segmentation and Weight Estimation Model Based on Deep Convolution Neural Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(6):259-267.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-11-03
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-06-10
  • 出版日期: 2021-06-10