亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于近紅外光譜和機器學(xué)習(xí)的大豆種皮裂紋識別研究
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2018YFD0101004)


Identification of Soybean Seed Coat Crack Based on Near Infrared Spectroscopy and Machine Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對目前大豆種皮裂紋檢測主要依靠人工、檢測效率低、誤差大的問題,提出一種基于近紅外光譜技術(shù)和機器學(xué)習(xí)的大豆種皮裂紋自動識別方法。采用FT-NIR光譜儀采集150粒大豆樣品(裂紋大豆75粒,正常大豆75粒)的近紅外光譜,采用原始光譜、標準正態(tài)變量變換(Standard normal variate, SNV)、多元散射校正(Multiple scatter correction, MSC)、一階導(dǎo)數(shù)結(jié)合SG平滑、二階導(dǎo)數(shù)結(jié)合SG平滑等5種方法對獲得的光譜進行預(yù)處理,分別采用偏最小二乘判別分析法(Partial least squares discriminant analysis, PLS-DA)、k-近鄰法(k-nearest neighbor, KNN)、支持向量機法(Support vector machine, SVM)、隨機森林法(Random forest,RF)、隨機梯度提升法(Stochastic gradient boosting, SGB)、極端梯度提升法(Extreme gradient boosting,XGBoost)等6種機器學(xué)習(xí)方法建立了大豆種皮裂紋識別模型,研究了不同光譜預(yù)處理方法對6種機器學(xué)習(xí)方法分類效果的影響,對比分析了不同建模方法的分類效果。結(jié)果表明,光譜預(yù)處理方法對不同機器學(xué)習(xí)方法的分類效果差別較大。在合適的光譜預(yù)處理條件下,6種不同的機器學(xué)習(xí)算法的驗證集準確率均不低于80.00%。PLS-DA的分類效果最好,驗證集最優(yōu)準確率達到90.00%;XGBoost的分類效果次之,驗證集最優(yōu)準確率達到86.67%,接下來依次是SVM、KNN、SGB和RF。利用近紅外光譜技術(shù)和機器學(xué)習(xí)方法識別大豆種皮裂紋是可行的,在原始光譜條件下,PLS-DA是大豆種皮裂紋識別的最佳方法。

    Abstract:

    At present, the detection of soybean seed coat crack mainly depends on visual inspection, which has low detection efficiency and large error, a method for automatic identification of soybean seed coat cracks based on near infrared spectroscopy and machine learning was proposed. The near infrared spectra of 150 soybean samples (75 cracked and 75 normal) were collected by FT-NIR spectrometer. The original spectra, standard normal variable (SNV), multiple scatter correction (MSC), the first derivative and the second derivative with SG smoothing were used to process the obtained spectra. Then partial least squares discriminant analysis (PLS-DA), k-nearest neighbor (KNN), support vector machine (SVM), random forest (RF), stochastic gradient boosting (SGB) and extreme gradient boosting (XGBoost) were used to establish soybean seed coat crack identification models. The effects of different spectral preprocessing methods on the classification results of the six machine learning methods were compared and analyzed. Under the appropriate spectral preprocessing conditions, the accuracy of validation set of six different machine learning algorithms was not less than 80.00%. PLS-DA had the best classification result, and the optimal accuracy rate of validation set reached 90.00%; the next was XGBoost, the optimal accuracy rate of validation set reached 86.67%, followed by SVM, KNN, SGB and RF. The results showed that near infrared spectroscopy combined with machine learning was feasible to identify soybean seed coat cracks, and PLS-DA was the best method to identify soybean seed coat cracks under the original spectral conditions. The research result can provide a method for automatic identification of soybean seed coat cracks.

    參考文獻
    相似文獻
    引證文獻
引用本文

汪六三,黃子良,王儒敬.基于近紅外光譜和機器學(xué)習(xí)的大豆種皮裂紋識別研究[J].農(nóng)業(yè)機械學(xué)報,2021,52(6):361-368. WANG Liusan, HUANG Ziliang, WANG Rujing. Identification of Soybean Seed Coat Crack Based on Near Infrared Spectroscopy and Machine Learning[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(6):361-368.

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-07-28
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-06-10
  • 出版日期: 2021-06-10