亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于改進Unet的小麥莖稈截面參數(shù)檢測
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(31771775)和廣西自然科學基金項目(2020GXNSFAA159090)


Detection of Wheat Stem Section Parameters Based on Improved Unet
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對小麥莖稈截面顯微圖像分割過程的復雜性,融合ResNet50和Unet網(wǎng)絡構建維管束和背景區(qū)域的語義分割模型Res-Unet,搭建對小麥莖稈截面、髓腔、厚壁和背景的語義分割模型Mobile-Unet,可實現(xiàn)對小麥莖稈截面尺寸、髓腔尺寸和維管束面積等微觀結構參數(shù)的檢測。針對小麥樣本數(shù)據(jù)集,通過深度學習中遷移學習的共享參數(shù)方式,將訓練好的ResNet50網(wǎng)絡權重應用到莖稈截面切片圖像的網(wǎng)絡模型上。結果表明,與同類方法相比,相關參數(shù)在精度上均有較大提升,全部參數(shù)的識別率超過97%,最高可達99.91%,平均每幅圖像檢測只需21.6s,與已有圖像處理方法(110s)相比,處理速度提升了80.36%。模型評估的準確率、召回率、F1值和平均交并比均達到90%。本文方法可用于小麥莖稈微觀結構的高通量觀察和參數(shù)測定,為作物抗倒伏研究奠定了技術基礎。

    Abstract:

    The microstructure is closely related to mechanical strength of the stem, which plays an important role in crop lodging resistance. However, the lack of effective methods in identification and estimation of the parameters severely restricted the related researches. In view of the complexity of wheat stalk cross-section microscopic image data set, ResNet50 and Unet deep learning network were used to build a semantic segmentation model Res-Unet for vascular bundles and background regions. MobileNet and Unet networks was combined to build a cross-section, marrow cavity and background. The semantic segmentation model Mobile-Unet measured the relevant parameters of lodging resistance such as the cross-sectional size of the wheat stem, the size of the pulp cavity and the area of the vascular bundle. For small sample data sets, the trained ResNet50 network weights were applied to the network model of wheat stalk cross-sectional slice images through the shared parameter method of transfer learning in deep learning. The results showed that compared with the previous studies, the key parameters greatly improved in accuracy, and the recognition rate of all parameters exceeded 97%, and the highest was 99.91%. Moreover, it only took 21.6s to detect a single image, which was an average increase of 80.36% over the 110s of existing image processing methods. In addition, the model evaluation accuracy rate, recall rate, F1 value and mean intersection over union (mIoU) index values all reached 90%. In conclusion, the method developed was accurate, real-time and effective, and can serve as one of important techniques for the further studies of crop lodging resistance.

    參考文獻
    相似文獻
    引證文獻
引用本文

陳燕,朱成宇,胡小春,王令強.基于改進Unet的小麥莖稈截面參數(shù)檢測[J].農業(yè)機械學報,2021,52(7):169-176. CHEN Yan, ZHU Chengyu, HU Xiaochun, WANG Lingqiang. Detection of Wheat Stem Section Parameters Based on Improved Unet[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(7):169-176.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-11-26
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-07-10
  • 出版日期:
文章二維碼