亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于輕量二階段檢測模型的自然環(huán)境多類蔬菜幼苗識別
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(31971786)、天津市自然科學(xué)基金項目(18JCQNJC04500)、天津市教委科研計劃項目(JWK1613、JWK1604)和天津職業(yè)技術(shù)師范大學(xué)校級預(yù)研項目(KJ2009、KYQD1706)


Identification of Multiple Vegetable Seedlings Based on Two-stage Lightweight Detection Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為實現(xiàn)自然環(huán)境下蔬菜幼苗精準(zhǔn)快速識別,本文以豆角、花菜、白菜、茄子、辣椒、黃瓜等形態(tài)差異大、具有代表性的蔬菜幼苗為研究對象,提出一種基于輕量化二階段檢測模型的多類蔬菜幼苗檢測方法。模型采用混合深度分離卷積作為前置基礎(chǔ)網(wǎng)絡(luò)對輸入圖像進行運算,以提高圖像特征提取速度與效率;在此基礎(chǔ)上,引入特征金字塔網(wǎng)絡(luò)(Feature pyramid networks, FPN)單元融合特征提取網(wǎng)絡(luò)不同層級特征信息,用于增強深度學(xué)習(xí)檢測模型對多尺度目標(biāo)的檢測精度;然后,通過壓縮檢測頭網(wǎng)絡(luò)通道維數(shù)和全連接層數(shù)量,降低模型參數(shù)規(guī)模與計算復(fù)雜度;最后,將距離交并比(Distance-IoU, DIoU)損失作為目標(biāo)邊框回歸損失函數(shù),使預(yù)測框位置回歸更加準(zhǔn)確。試驗結(jié)果表明,本文提出的深度學(xué)習(xí)推理模型對多類蔬菜幼苗的平均精度均值為97.47%,識別速度為19.07 f/s,模型占用存儲空間為60 MB,對小目標(biāo)作物以及葉片遮擋作物的平均精度均值達到88.55%,相比于Faster R-CNN、R-FCN模型具有良好的泛化性能和魯棒性,可以為蔬菜田間農(nóng)業(yè)智能裝備精準(zhǔn)作業(yè)所涉及的蔬菜幼苗檢測識別問題提供新方案。

    Abstract:

    The identification of vegetable seedlings offers many useful applications in precision agriculture,such as automated weeding, variable rate fertilization and precise spraying of diseased plants. Aiming to recognize vegetable seedlings accurately and rapidly in natural environment, multiple kinds of vegetable seedlings were taken as study object, and a two-stage based lightweight detection model was proposed. In order to improve the speed and efficiency of image feature extraction, a mixed depth wise convolution that naturally mixed up multiple kernel sizes in a single convolution was applied as backbone network to process input images. Moreover, the feature pyramid networks (FPN) was introduced to integrate different feature maps of backbone network with the aim of improving the identification accuracy of deep learning detection model for multi-scale targets. By minimizing network channel dimensions and decreasing the number of full connection layers in detection head,the two-stage based detection model parameters and computational complexity were greatly reduced. In addition, a distance-IoU (DIoU) loss was proposed for bounding box regression to make the predicted box match with the target box perfectly. Experimental results showed that the mean average precision and recognition speed of multiple kinds of vegetable seedlings based on the proposed model were 97.47% and 19.07 f/s, respectively, and model size was 60 MB. The average accuracy of detection model can obtain 88.55%,when a crop size was less than 32 pixels×32 pixels or leaves occlusion occurred. It was demonstrated that the two-stage based lightweight detection model havd good generalization and robustness performance compared with that by other models,such as Faster R-CNN and R-FCN. The approach presented obtained high accurate rate and fast inference speed in the recognition of vegetable seedlings, which opened a new journey for the research of vegetable detection in precision agriculture.

    參考文獻
    相似文獻
    引證文獻
引用本文

孟慶寬,張漫,葉劍華,都澤鑫,宋名果,張志鵬.基于輕量二階段檢測模型的自然環(huán)境多類蔬菜幼苗識別[J].農(nóng)業(yè)機械學(xué)報,2021,52(10):282-290. MENG Qingkuan, ZHANG Man, YE Jianhua, DU Zexin, SONG Mingguo, ZHANG Zhipeng. Identification of Multiple Vegetable Seedlings Based on Two-stage Lightweight Detection Model[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(10):282-290.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-10-30
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-12-20
  • 出版日期:
文章二維碼