亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于小波能量系數(shù)和葉面積指數(shù)的冬小麥生物量估算
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(41871333)和河南省科技攻關項目(212102110238)


Winter Wheat Biomass Estimation Based on Wavelet Energy Coefficient and Leaf Area Index
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    生物量是評價作物長勢及產(chǎn)量估算的重要指標,科學、快速、準確地獲取生物量信息,對于監(jiān)測冬小麥生長狀況以及產(chǎn)量預測等具有重要意義。以冬小麥為研究對象,通過相關性分析,選取相關性較好的小波能量系數(shù),同時耦合葉面積指數(shù),基于支持向量回歸算法、隨機森林算法、高斯過程回歸3種算法構(gòu)建冬小麥生物量估算模型。結(jié)果顯示,基于小波能量系數(shù),分別利用支持向量回歸算法、隨機森林算法、高斯過程回歸進行生物量估算,4個生育期的驗證R2分別是0.55、0.40、0.39;0.75、0.70、0.83;0.84、0.92、0.93;0.84、0.89、0.85。表明高斯過程回歸模型估算精度最優(yōu)。葉面積指數(shù)耦合小波能量系數(shù),利用支持向量回歸算法、隨機森林回歸算法、高斯過程回歸進行生物量估算,4個生育期的驗證R2分別是0.76、0.73、0.77;0.76、0.72、0.84;0.87、0.94、0.94;0.85、0.90、0.91。表明高斯過程回歸算法估算精度最優(yōu),并且在一定程度上能夠克服冠層光譜飽和現(xiàn)象,提高模型估算精度。以小波能量系數(shù)和葉面積指數(shù)為輸入變量結(jié)合高斯過程回歸算法建立冬小麥生物量估算模型,可以提高生物量估算精度,為基于遙感技術的作物參數(shù)快速估算提供參考。

    Abstract:

    Biomass is an important indicator for evaluating crop growth and yield estimation. Obtaining biomass information scientifically, quickly and accurately is of great significance for monitoring the growth status of winter wheat and yield prediction. Taking winter wheat as the research object, through correlation analysis, the wavelet energy coefficient with good correlation was selected, and the leaf area index was coupled at the same time. Based on the support vector regression algorithm, random forest algorithm, and Gaussian process regression, three algorithms were used to construct a winter wheat biomass estimation model. The verification R2 of the four growth periods were 0.55, 0.40 and 0.39; 0.75, 0.70 and 0.83; 0.84, 0.92 and 0.93; 0.84, 0.89 and 0.85, respectively. It was showed that the estimation accuracy of Gaussian process regression model was the best. Leaf area index coupled with wavelet energy coefficients, using the three algorithms to estimate biomass, the verification R2 of the four growth periods were 0.76, 0.73 and 0.77; 0.76, 0.72 and 0.84; 0.87, 0.94 and 0.94; 0.85, 0.90 and 0.91, respectively, indicating that the Gaussian process regression algorithm had the best estimation accuracy, and to a certain extent, it can overcome the canopy spectrum saturation phenomenon and improve the estimation accuracy of the model. Using wavelet energy coefficient and leaf area index as input variables combined with Gaussian process regression algorithm to establish a winter wheat biomass estimation model, which can improve the accuracy of biomass estimation and provide a scientific reference for the rapid estimation of crop parameters based on remote sensing technology.

    參考文獻
    相似文獻
    引證文獻
引用本文

李長春,李亞聰,王藝琳,馬春艷,陳偉男,丁凡.基于小波能量系數(shù)和葉面積指數(shù)的冬小麥生物量估算[J].農(nóng)業(yè)機械學報,2021,52(12):191-200. LI Changchun, LI Yacong, WANG Yilin, MA Chunyan, CHEN Weinan, DING Fan. Winter Wheat Biomass Estimation Based on Wavelet Energy Coefficient and Leaf Area Index[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(12):191-200.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-07-31
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-09-13
  • 出版日期:
文章二維碼