亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于NDWI和卷積神經(jīng)網(wǎng)絡(luò)的冬小麥產(chǎn)量估測方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(41471342、41971383)和國家重點研發(fā)計劃項目(2018YFC1508901)


Winter Wheat Yield Estimation Method Based on NDWI and Convolutional Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為進一步提高冬小麥單產(chǎn)估測的效率和準確性,利于宏觀指導(dǎo)農(nóng)業(yè)生產(chǎn)、制定冬小麥整個生長期的精準管理決策,針對目前已有的縣域冬小麥單產(chǎn)估測方法存在時效性差、準確度低、成本高等問題,以中分辨率成像光譜儀(Moderate resolution imaging spectroradiometer, MODIS)為數(shù)據(jù)源,分別提取不同時段可見光與近紅外波段信息,選擇歸一化差值植被指數(shù)(Normalized difference vegetation index, NDVI)、歸一化差值水指數(shù)(Normalized difference water index, NDWI)、土壤調(diào)節(jié)植被指數(shù)(Soil adjusted vegetation index, SAVI)、調(diào)整土壤亮度植被指數(shù)(Optimal soil adjusted vegetation index, OSAVI)、綠色歸一化植被指數(shù)(Green normalized difference vegetation index, GNDVI)、改進型土壤調(diào)節(jié)植被指數(shù)(Modified soiladjusted vegetation index, MSAVI)以及綠紅植被指數(shù)(Green red vegetation index, GRVI)7個遙感植被指數(shù),以其直方圖分布信息作為輸入變量,應(yīng)用卷積神經(jīng)網(wǎng)絡(luò)(Convolutional neural network, CNN)回歸預(yù)測冬小麥產(chǎn)量,對比分析NDWI在冬小麥產(chǎn)量估測上的表現(xiàn)并探究其在霜凍害影響下的精度變化。研究表明,相對于植被指數(shù)NDVI、SAVI、OSAVI、GNDVI、MSAVI、GRVI,NDWI對冬小麥生育早期的產(chǎn)量預(yù)測表現(xiàn)出更好的預(yù)測效果,單產(chǎn)去趨勢前后的NDWI對產(chǎn)量的預(yù)測精度均高于NDVI、SAVI等植被指數(shù),決定系數(shù)最高可達到0.79,且在霜凍害影響下仍能保持較好的預(yù)測效果;NDWI在抽穗—灌漿階段對冬小麥最終產(chǎn)量影響最大,4月23—30日時間段內(nèi)NDWI對產(chǎn)量的決定系數(shù)可達到0.72;空間分布上,研究區(qū)域冬小麥具有東部單產(chǎn)最高、中部次之、西部單產(chǎn)最低的空間分布特征,西部和北部山區(qū)與東部黃淮海平原交界處誤差較大。研究結(jié)果可為冬小麥生育早期產(chǎn)量預(yù)測提供科學(xué)依據(jù)。

    Abstract:

    The yield estimation of winter wheat is of great reference significance for the country to guide agricultural production and make accurate management decisions for the whole growth period of winter wheat. The moderate resolution imaging spectroradiometer (MODIS) was taken as the data source to extract the information of visible and near-infrared bands at different periods and selected seven remote sensing features of vegetation, including normalized difference vegetation index (NDVI), normalized difference water index (NDWI), soil adjusted vegetation index (SAVI), optimal soil adjusted vegetation index (OSAVI), green-normalized difference vegetation index (GNDVI), modified soil-adjusted vegetation index (MSAVI) and green red vegetation index (GRVI). Using its histogram distribution information as an input variable, a convolutional neural network (CNN) was used to predict winter wheat yield, comparatively analyze the performance of NDWI in winter wheat yield estimation, and explore its accuracy changes under the influence of frost damage. The results showed that compared with NDVI, SAVI, OSAVI, GNDVI, MSAVI and GRVI, NDWI had a better prediction effect on the yield prediction of winter wheat in the early growth stage, the prediction accuracy of NDWI was higher than that of NDVI, SAVI and other vegetation indices before and after yield detrending, the coefficient of determination (R2) was up to 0.79, and it can still maintain a good prediction effect under the influence of frost damage. NDWI had the greatest influence on the final yield of winter wheat at the stage of heading and grouting. From April 23th to April 30th, the R2 of NDWI can reach 0.72. In terms of spatial distribution, the winter wheat in the study area had the highest yield in the east, followed by the middle, and the lowest yield in the west, and the western and northern mountains and the eastern plains at the junction of large error. The results could provide scientific reference for early growth yield prediction of winter wheat.

    參考文獻
    相似文獻
    引證文獻
引用本文

劉峻明,周舟,和曉彤,王鵬新,黃健熙.基于NDWI和卷積神經(jīng)網(wǎng)絡(luò)的冬小麥產(chǎn)量估測方法[J].農(nóng)業(yè)機械學(xué)報,2021,52(12):273-280. LIU Junming, ZHOU Zhou, HE Xiaotong, WANG Pengxin, HUANG Jianxi. Winter Wheat Yield Estimation Method Based on NDWI and Convolutional Neural Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(12):273-280.

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-12-09
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-03-03
  • 出版日期:
文章二維碼