亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于深度學(xué)習(xí)的作物長勢監(jiān)測和產(chǎn)量估測研究進(jìn)展
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(42171332、41871336)


Crop Growth Monitoring and Yield Estimation Based on Deep Learning: State of the Art and Beyond
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    作物長勢是糧食產(chǎn)量估測與預(yù)測的主要信息源,隨著高時空分辨率遙感數(shù)據(jù)的不斷出現(xiàn),遙感數(shù)據(jù)已呈現(xiàn)出明顯的大數(shù)據(jù)特征,以深度學(xué)習(xí)為基礎(chǔ)的作物長勢監(jiān)測和產(chǎn)量估測已成為指導(dǎo)農(nóng)業(yè)生產(chǎn)的重要手段之一。本文通過總結(jié)深度學(xué)習(xí)模型樣本以及模型結(jié)構(gòu)的發(fā)展歷程,概括了深度學(xué)習(xí)在區(qū)域尺度的研究現(xiàn)狀,其中從樣本構(gòu)建和樣本擴充兩方面概述了模型樣本,從卷積神經(jīng)網(wǎng)絡(luò)(CNN)、循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)及其優(yōu)化結(jié)構(gòu)和模型可解釋性總結(jié)了深度學(xué)習(xí)模型結(jié)構(gòu)的進(jìn)展;隨后從無人機平臺和衛(wèi)星平臺兩方面闡述了田塊尺度國內(nèi)外作物長勢監(jiān)測和產(chǎn)量估測研究的最新進(jìn)展;最后指出了目前存在的問題和未來擬重點加強的研究任務(wù),主要包括通過基于區(qū)域和參數(shù)的遷移學(xué)習(xí)以改善小樣本的限制;深度學(xué)習(xí)模型和作物生長模型有機結(jié)合,以提高模型的可解釋性;無人機平臺與衛(wèi)星平臺相結(jié)合,確保時空融合過程中尺度轉(zhuǎn)換的精度;深入探索深度學(xué)習(xí)在作物長勢監(jiān)測方面的應(yīng)用潛力。

    Abstract:

    Crop growth conditions are key information sources for estimating and forecasting crop yields, which are of great value to food security and trade. With the continuous appearance of high spatial and temporal resolution remote sensing data, the remote sensing data have presented obvious characteristics of big data. Therefore, crop growth monitoring and yield estimation based on deep learning has become one of the important means to guide agricultural production. The research status of deep learning at the regional scale was investigated, which focused on the development of model samples and model structure. Among them, the model samples were summarized through two aspects of sample construction and sample augmentation. The progress of the deep learning model structure of convolutional neural network (CNN), recurrent neural network (RNN), and their optimized structures and model interpretability were also summarized. Besides, the latest progress of crop growth monitoring and yield estimation at field scale at home and abroad was elaborated from two aspects: unmanned aerial vehicle (UAV) platform and satellite platform. Finally, the existing problems and the future perspective were analyzed and discussed, including improving the limitation of small samples through region-based and parameter-based transfer learning, the organic combination of deep learning model and crop growth model to improve the interpretability of the model, and the combination of UAV platform and satellite platform to ensure the precision of scale conversion in the process of spatio-temporal fusion, which can further explore the potential of deep learning in crop growth monitoring.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王鵬新,田惠仁,張悅,韓東,王婕,尹猛.基于深度學(xué)習(xí)的作物長勢監(jiān)測和產(chǎn)量估測研究進(jìn)展[J].農(nóng)業(yè)機械學(xué)報,2022,53(2):1-14. WANG Pengxin, TIAN Huiren, ZHANG Yue, HAN Dong, WANG Jie, YIN Meng. Crop Growth Monitoring and Yield Estimation Based on Deep Learning: State of the Art and Beyond[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(2):1-14.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-12-03
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-12-20
  • 出版日期:
文章二維碼