亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于SPA-SSA-BP的小麥秸稈含水率檢測模型
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2019YFB1312304)、北京市農(nóng)林科學(xué)院創(chuàng)新能力建設(shè)專項(xiàng)(KJCX20200416)和江蘇省農(nóng)業(yè)科技自主創(chuàng)新專項(xiàng)(CX(20)1007)


Prediction Model of Wheat Straw Moisture Content Based on SPA-SSA-BP
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為提高基于電容法的小麥秸稈含水率檢測模型的檢測精度,擴(kuò)大含水率檢測范圍,提高模型適應(yīng)性,本文以小麥秸稈為研究對象,使用LCR數(shù)字電橋,測量含水率為10.43%~25.89%的秸稈在頻率0.05~100kHz、容積密度90.03~179.42kg/m3和溫度25~40℃內(nèi)的電容,利用連續(xù)投影法(Successive projections algorithm,SPA)和主成分分析法(Principal component analysis,PCA)對原始數(shù)據(jù)進(jìn)行預(yù)處理,提取特征頻率,選用反向傳播神經(jīng)網(wǎng)絡(luò)(Back propagation neural network,BPNN)在全頻率及2個(gè)特征頻率下分別建立秸稈含水率、容積密度、溫度的定量分析模型,引入麻雀搜索算法(Sparrow search algorithm,SSA)優(yōu)化反向傳播神經(jīng)網(wǎng)絡(luò)模型。試驗(yàn)結(jié)果表明,基于全頻率構(gòu)建的模型較基于SPA算法構(gòu)建的模型預(yù)測效果略好,綜合考慮模型復(fù)雜度和預(yù)測性能,本研究選用基于SPA算法結(jié)合SSA算法優(yōu)化后的BP神經(jīng)網(wǎng)絡(luò)模型(SPA-SSA-BP)作為小麥秸稈含水率的檢測模型,其預(yù)測集R2P、RMSEP和RPDP分別為0.9832、0.00550和7.715。利用該模型對13個(gè)含水率為10.62%~25.59%的秸稈樣本進(jìn)行預(yù)測,含水率預(yù)測結(jié)果的相對誤差為-5.27%~5.52%,其中96.8%的預(yù)測誤差在±5%以內(nèi)。由此說明,模型具有較高的準(zhǔn)確性和較好的魯棒性。

    Abstract:

    In order to improve the detection accuracy of the wheat straw moisture content prediction model based on capacitance method, expand the detection range of moisture content and improve the adaptability of the model, taking wheat straw as the research object and using LCR digital bridge, the capacitance data of straw with 10.43%~25.89% moisture content were measured in the frequency range of 0.05~100kHz, volume density range of 90.03~179.42kg/m3 and temperature range of 25~40℃. The original data were preprocessed by using the successive projections algorithm (SPA) and principal component analysis (PCA) to extract characteristic frequencies, BP neural network was used to establish quantitative analysis models of straw moisture content, volume density, temperature and capacitance at full frequency and two characteristic frequencies respectively, and sparrow search algorithm (SSA) was introduced to optimize the BP neural network model. The experimental results showed that the prediction effect of the model based on full frequency was slightly better than that of the model based on SPA algorithm. Considering the model complexity and prediction performance, the BP neural network model (SPA-SSA-BP) optimized based on SPA algorithm and SSA algorithm was selected as the prediction model of wheat straw moisture content. The R2P, RMSEP and RPDP of prediction sets were 0.9832, 0.00550 and 7.715, respectively. The model was used to predict 13 straw samples with water content ranging from 10.62% to 25.59%, and the relative error of water content prediction results was within -5.27% to 5.52%, 96.8% of which was within ±5%. This showed that the model had high accuracy and good robustness, and the method can provide an idea and theoretical reference for other crop straw water content prediction. 

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

孟志軍,劉淮玉,安曉飛,尹彥鑫,金誠謙,張安琪.基于SPA-SSA-BP的小麥秸稈含水率檢測模型[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(2):231-238,245. MENG Zhijun, LIU Huaiyu, AN Xiaofei, YIN Yanxin, JIN Chengqian, ZHANG Anqi. Prediction Model of Wheat Straw Moisture Content Based on SPA-SSA-BP[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(2):231-238,245.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-11-05
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-11-25
  • 出版日期:
文章二維碼