亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

農(nóng)業(yè)文本語(yǔ)義理解技術(shù)綜述
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2019YFD1101105)、財(cái)政部和農(nóng)業(yè)農(nóng)村部:國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系項(xiàng)目(CARS-23-D07)和北京市農(nóng)林科學(xué)院青年科研基金項(xiàng)目(QNJJ202030)


Review of Semantic Analysis Techniques of Agricultural Texts
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    隨著互聯(lián)網(wǎng)和人工智能技術(shù)的發(fā)展,農(nóng)業(yè)知識(shí)智能化服務(wù)逐漸承擔(dān)起為農(nóng)業(yè)生產(chǎn)管理提供有效技術(shù)指導(dǎo)的作用。本文對(duì)農(nóng)業(yè)文本語(yǔ)義理解中的關(guān)鍵技術(shù)及應(yīng)用進(jìn)行綜述。首先按照自然語(yǔ)言處理中基于規(guī)則、機(jī)器學(xué)習(xí)和深度學(xué)習(xí)的語(yǔ)義處理方法介紹其在農(nóng)業(yè)領(lǐng)域應(yīng)用的進(jìn)展;然后闡述了針對(duì)農(nóng)業(yè)知識(shí)特性的語(yǔ)義分析方法,涵蓋農(nóng)業(yè)文本分析主要過(guò)程的儲(chǔ)存、表達(dá)、計(jì)算,包括農(nóng)業(yè)知識(shí)圖譜的知識(shí)抽取、融合、表示、推理,TF-IDF、Word2Vec、BERT等農(nóng)業(yè)文本表示模型與CNN、RNN、Attention等分類(lèi)模型;闡述了可用于分詞、向量化表達(dá)等的通用語(yǔ)料庫(kù)和農(nóng)業(yè)領(lǐng)域常用語(yǔ)料庫(kù);從農(nóng)業(yè)智能問(wèn)答、農(nóng)業(yè)語(yǔ)義檢索、農(nóng)業(yè)智能管理決策方面闡述語(yǔ)義理解在農(nóng)業(yè)領(lǐng)域中的應(yīng)用;最后從農(nóng)業(yè)語(yǔ)料庫(kù)標(biāo)準(zhǔn)化構(gòu)建、語(yǔ)義理解模型復(fù)雜度、多模態(tài)語(yǔ)義處理、多區(qū)域多語(yǔ)言語(yǔ)義理解等方面對(duì)農(nóng)業(yè)文本的語(yǔ)義理解研究趨勢(shì)進(jìn)行了展望。

    Abstract:

    With the development of Internet and artificial intelligence technology, agricultural knowledge intelligent services have gradually assumed the role of providing effective technical guidance for agricultural production management, especially during the epidemic. The key technologies and applications in the semantic understanding of agricultural knowledge service texts were reviewed. Firstly, its progress in agriculture was introduced according to the semantic processing methods based on rules, machine learning and deep learning in natural language processing. Then, the semantic analysis method for the characteristics of agricultural knowledge was introduced, covering the storage, expression and calculation of the main process of agricultural text analysis, including knowledge extraction, knowledge fusion, knowledge representation and knowledge inference of agricultural knowledge graph. The representation model of agricultural text such as TF-IDF, Word2Vec and BERT and classification models such as CNN, RNN and Attention were presented. Then the common corpus was described. The application of semantic understanding in agriculture from the aspects of agricultural intelligent question answering, agricultural semantic retrieval and agricultural intelligent management decision as well were introduced. Finally, the research trend of agricultural text semantic understanding was prospected from the aspects of standardization construction of agricultural corpus, complexity of semantic understanding model, multi-modal semantic processing, multi-region and multi-language semantic understanding.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

吳華瑞,郭威,鄧穎,王郝日欽,韓笑,黃素芳.農(nóng)業(yè)文本語(yǔ)義理解技術(shù)綜述[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(5):1-16. WU Huarui, GUO Wei, DENG Ying, WANG Haoriqin, HAN Xiao, HUANG Sufang. Review of Semantic Analysis Techniques of Agricultural Texts[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(5):1-16.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-03-14
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-05-10
  • 出版日期: