亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于多維高光譜植被指數(shù)的冬小麥葉面積指數(shù)估算
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

新疆維吾爾自治區(qū)高??蒲杏?jì)劃項(xiàng)目(XJEDU2020Y037)、伊犁師范大學(xué)博士引進(jìn)人才科研項(xiàng)目(2020YSBSYJ001)和伊犁師范大學(xué)資源與生態(tài)研究所開放課題重點(diǎn)項(xiàng)目(YLNURE202206)


Estimation of Winter Wheat LAI Based on Multi-dimensional Hyperspectral Vegetation Indices
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為提高干旱區(qū)冬小麥葉面積指數(shù)(Leaf area index, LAI)遙感估算精度,以拔節(jié)期冬小麥LAI為研究對象,在對冠層高光譜數(shù)據(jù)進(jìn)行一階(First derivative, FD)、二階(Second derivative, SD)微分預(yù)處理的基礎(chǔ)上,計(jì)算了任意波段組合的二維植被指數(shù)(Two-dimensional vegetation index, 2DVI)和三維植被指數(shù)(Three-dimensional vegetation index, 3DVI),通過進(jìn)行與LAI之間相關(guān)性分析,尋求最佳波段組合的植被指數(shù);利用人工神經(jīng)網(wǎng)絡(luò)(Artificial neural network, ANN)、K近鄰(K-nearest neighbors, KNN)和支持向量回歸(Support vector regression, SVR)算法分別建立LAI估算模型,并進(jìn)行精度驗(yàn)證。結(jié)果表明:任意波段組合的植被指數(shù)與LAI相關(guān)性均顯著提高,尤其是基于一階微分預(yù)處理光譜的FD-3DVI-4(714nm, 400nm, 1001nm)相關(guān)系數(shù)達(dá)到0.93(P<0.01),且最優(yōu)組合波段主要位于紅邊位置?;谧顑?yōu)FD-3DVI植被指數(shù)和K近鄰算法的估算模型表現(xiàn)突出,其決定系數(shù)R2為0.89,均方根誤差最低(RMSE為0.31),相對分析誤差RPD為2.41;表明K近鄰算法更適合解決非線性問題,能夠提高估算精度,為后期作物長勢評價、合理施肥等提供理論依據(jù)。

    Abstract:

    Winter wheat is one of the important food crops in China, and its planting area and output are the second only to rice. In order to improve the accuracy of remote sensing estimation of winter wheat leaf area index (LAI) in arid regions, taking the LAI of winter wheat at the jointing stage as research object, based on the first derivative (FD) and second derivative (SD) differential preprocessing of the canopy hyperspectral data, the two-dimensional vegetation index (2DVI) and three-dimensional vegetation index (3DVI) of any band combination was calculated, and the correlation with LAI was carried out. To find the vegetation index of the best band combination;the artificial neural network (ANN), K-nearest neighbors (KNN) and support vector regression (SVR) were used to establish LAI estimation respectively model and verify the accuracy. The results showed that the correlation between vegetation index and LAI in any combination of wavelength bands was significantly improved, especially the correlation coefficient of FD-3DVI-4(714nm, 400nm, 1001nm) based on the FD preprocessing spectrum reached 0.93 (P<0.01), and the optimal combination band was mainly located in the red edge position. The estimation model based on the optimal FD-3DVI index and K-nearest neighbors algorithm performed outstanding, its R2=0.89, the root mean square error (RMSE) was the lowest (0.31), and the relative analysis error (RPD) was 2.41. It was conclused that the K-nearest neighbor algorithm was more suitable for solving the nonlinear problem and improve the estimation accuracy, and it can provide a theoretical basis for the later crop growth evaluation and reasonable fertilization.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

吾木提·艾山江,尼加提·卡斯木,陳晨,買買提·沙吾提.基于多維高光譜植被指數(shù)的冬小麥葉面積指數(shù)估算[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(5):181-190. UMUT Hasan, NIJAT Kasim, CHEN Chen, MAMAT Sawut. Estimation of Winter Wheat LAI Based on Multi-dimensional Hyperspectral Vegetation Indices[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(5):181-190.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-01-27
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-05-10
  • 出版日期: