亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于改進(jìn)YOLO v5的夜間溫室番茄果實(shí)快速識(shí)別
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

陜西省科技創(chuàng)新引導(dǎo)專項(xiàng)(2021QFY08-01)


Fast Recognition of Tomato Fruit in Greenhouse at Night Based on Improved YOLO v5
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為實(shí)現(xiàn)日光溫室夜間環(huán)境下采摘機(jī)器人正常工作以及番茄快速識(shí)別,提出一種基于改進(jìn)YOLO v5的夜間番茄果實(shí)的識(shí)別方法。采集夜間環(huán)境下番茄圖像2000幅作為訓(xùn)練樣本,通過(guò)建立一種基于交并比的CIOU目標(biāo)位置損失函數(shù),對(duì)原損失函數(shù)進(jìn)行改進(jìn),根據(jù)計(jì)算函數(shù)anchor生成自適應(yīng)錨定框,確定最佳錨定框尺寸,構(gòu)建改進(jìn)型YOLO v5網(wǎng)絡(luò)模型。試驗(yàn)結(jié)果表明,改進(jìn)YOLO v5網(wǎng)絡(luò)模型對(duì)夜間環(huán)境下番茄綠色果實(shí)識(shí)別精度、紅色果實(shí)識(shí)別精度、綜合平均識(shí)別精度分別為96.2%、97.6%和96.8%,對(duì)比CNN卷積網(wǎng)絡(luò)模型及YOLO v5模型,提高了被遮擋特征物與暗光下特征物的識(shí)別精度,改善了模型魯棒性。將改進(jìn)YOLO v5網(wǎng)絡(luò)模型通過(guò)編譯將訓(xùn)練結(jié)果寫入安卓系統(tǒng)制作快速檢測(cè)應(yīng)用軟件,驗(yàn)證了模型對(duì)夜間環(huán)境下番茄果實(shí)識(shí)別的可靠性與準(zhǔn)確性,可為番茄實(shí)時(shí)檢測(cè)系統(tǒng)的相關(guān)研究提供參考。

    Abstract:

    In order to realize the normal operation of the picking robot and the rapid recognition of tomato in the nighttime environment of solar greenhouse, a nighttime tomato fruit detection method based on improved YOLO v5(You only look once)was proposed. Totally 2000 tomato images in the night environment were collected as the initial training samples, and the original loss function was improved by establishing a CIOU target position loss function based on intersection and union ratio, and then an adaptive anchor frame was generated according to the anchor calculation function, the optimal anchor frame size was determined, the network structure was optimized, and an improved YOLO v5 network model was constructed, and the recognition rate of tomato fruit in night environment was improved. The experimental results showed that the average recognition accuracy of improved YOLO v5 network model for tomato green and red fruits and average recognition accuracy in night environment was 96.2%, 97.6% and 96.8%. Compared with traditional CNN convolution network model and traditional YOLO v5 model, the recognition accuracy of occluded features and features in dark light was improved and the robustness of the model was improved. The improved YOLO v5 network model compiled and wrote the training results into Android system to make a rapid detection application software, which verified the reliability and accuracy of the model for tomato fruit recognition in night environment, and provided a reference for the relevant research of tomato real-time detection system.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

何斌,張亦博,龔健林,付國(guó),趙昱權(quán),吳若丁.基于改進(jìn)YOLO v5的夜間溫室番茄果實(shí)快速識(shí)別[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(5):201-208. HE Bin, ZHANG Yibo, GONG Jianlin, FU Guo, ZHAO Yuquan, WU Ruoding. Fast Recognition of Tomato Fruit in Greenhouse at Night Based on Improved YOLO v5[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(5):201-208.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-06-23
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-05-10
  • 出版日期: