亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于冠層光譜特征和株高的馬鈴薯植株氮含量估算
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(41601346)、廣東省重點領(lǐng)域研發(fā)計劃項目(2019B020216001)和2022年度農(nóng)業(yè)農(nóng)村部農(nóng)業(yè)遙感機理與定量遙感重點實驗室建設(shè)項目(PT2022-24)


Estimation of Potato Plant Nitrogen Content Based on Canopy Spectral Characteristics and Plant Height
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為及時準(zhǔn)確地掌握作物的植株氮含量(PNC)信息,監(jiān)測作物生長狀況,實現(xiàn)農(nóng)田氮素施肥的科學(xué)管理,以馬鈴薯為研究對象,首先獲取了現(xiàn)蕾期、塊莖形成期、塊莖增長期、淀粉積累期和成熟期的數(shù)碼影像,并實測了各生育期的PNC、株高(H)和地面控制點(GCP)的三維坐標(biāo)。其次利用各生育期的無人機數(shù)碼影像與GCP結(jié)合生成試驗區(qū)域的數(shù)字正射影像(DOM)和數(shù)字表面模型(DSM),并從中提取冠層光譜特征和株高(Hdsm)。然后將各生育期提取的Hdsm和數(shù)碼影像變量與地面實測的PNC進(jìn)行相關(guān)性分析,從中篩選出相關(guān)性較好的影像變量和Hdsm作為馬鈴薯PNC估算模型的輸入?yún)?shù)。最后分別基于影像變量和影像變量結(jié)合Hdsm利用多元線性回歸(MLR)、誤差反向傳播(BP)神經(jīng)網(wǎng)絡(luò)和Lasso回歸3種方法構(gòu)建馬鈴薯PNC估算模型。結(jié)果表明:基于DSM提取的Hdsm與實測H具有較高的擬合度(R2為0.860,RMSE為2.663cm,NRMSE為10.234%);各生育期加入Hdsm,均能提高馬鈴薯PNC的估算精度和穩(wěn)定性;各生育期利用MLR方法構(gòu)建的PNC估算模型優(yōu)于BP神經(jīng)網(wǎng)絡(luò)和Lasso回歸。該研究可為馬鈴薯PNC狀況的高效、無損監(jiān)測提供技術(shù)支撐。

    Abstract:

    Timely and accurate grasp of crop plant nitrogen content (PNC) information is helpful to monitor crop growth and realize the scientific management of farmland nitrogen fertilization. Based on this, taking unmanned aerial vehicle (UAV) as the platform to obtain digital images of potato budding, tuber formation, tuber growth, starch accumulation, and maturity period, and the PNC, plant height, and the three-dimensional coordinates of the ground control point (GCP) were measured. Secondly, the digital orthophoto map (DOM) and digital surface model (DSM) of the test area were generated by combining the digital images of UAV in each growth period with GCP. Then, the correlation analysis between the Hdsm and the constructed image variables of each growth period with the PNC measured on the ground were carried out, and the image variables with good correlation were selected as the input parameter of the potato PNC estimation models with the Hdsm. Finally, based on the image variables and image variables combined with Hdsm, three methods of multiple linear regression (MLR), error back propagation (BP) neural network, and Lasso regression were used to construct the PNC estimation models of potato at each growth stage. The results showed that the Hdsm extracted based on DSM had a high degree of fit with the measured H(R2 was 0.860, RMSE was 2.663cm, and NRMSE was 10.234%). Adding Hdsm in each growth period can improve the accuracy and stability of estimating potato PNC. The effect of PNC estimation model constructed by MLR method in each growth period was better than that of BP neural network and Lasso regression. Therefore, the research result can provide a technical reference for the efficient and non-destructive monitoring of potato PNC status.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

樊意廣,馮海寬,劉楊,邊明博,孟煬,楊貴軍.基于冠層光譜特征和株高的馬鈴薯植株氮含量估算[J].農(nóng)業(yè)機械學(xué)報,2022,53(6):202-208,294. FAN Yiguang, FENG Haikuan, LIU Yang, BIAN Mingbo, MENG Yang, YANG Guijun. Estimation of Potato Plant Nitrogen Content Based on Canopy Spectral Characteristics and Plant Height[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(6):202-208,294.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-01-13
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-03-23
  • 出版日期:
文章二維碼