亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于快照集成卷積神經(jīng)網(wǎng)絡(luò)的蘋果葉部病害程度識(shí)別
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

陜西省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2021NY-138)、CCF-百度松果基金項(xiàng)目(2021PP15002000)、國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2020YFD1100601-02-13)、陜西省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2019ZDLNY07-06-01)、寧夏智慧農(nóng)業(yè)產(chǎn)業(yè)技術(shù)協(xié)同創(chuàng)新中心項(xiàng)目(2017DC53)和國(guó)家級(jí)大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃項(xiàng)目(S202010712083)


Apple Leaf Disease Identification Method Based on Snapshot Ensemble CNN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)蘋果葉部病害程度識(shí)別準(zhǔn)確率低的問題,構(gòu)建了一種基于快照集成方法的蘋果葉部病害程度識(shí)別模型。首先,通過多種數(shù)字圖像處理技術(shù)對(duì)原始蘋果葉部病害圖像進(jìn)行數(shù)據(jù)增強(qiáng);然后,選取InceptionResNet V2作為基模型,引入CBAM模塊提升網(wǎng)絡(luò)的特征提取能力,使用焦點(diǎn)損失函數(shù)緩解蘋果葉部病害數(shù)據(jù)集類別不平衡問題;最后,通過快照集成方法進(jìn)行模型集成,得到蘋果葉部病害程度識(shí)別模型。利用蘋果黑星病和銹病的早期和晩期病害數(shù)據(jù)集進(jìn)行了模型驗(yàn)證,準(zhǔn)確率高達(dá)90.82%,比單一InceptionResNet V2模型的準(zhǔn)確率提高了2.50個(gè)百分點(diǎn)。實(shí)驗(yàn)結(jié)果表明,基于快照集成的識(shí)別模型準(zhǔn)確率較高,為蘋果葉部病害程度識(shí)別研究提供了參考。

    Abstract:

    To address the problem of low recognition accuracy for identifying different apple leaf diseases, an apple leaf disease identification model was proposed based on snapshot ensemble. Firstly, the original dataset was augmented by various digital image processing methods. Then, an Inception-ResNet V2 was chosen as base model. The convolutional block attention module (CBAM) was introduced to enhance the feature extraction capability for apple leaf diseases. And focal loss was used to alleviate the imbalance of samples in each category. Finally, the model was integrated through snapshot ensemble to obtain the final identification model for different degrees of diseases on apple leaves. The image was input to the final model for identification. Compared with the original single Inception-ResNet V2, the recognition accuracy of the improved model was increased from 88.32% to 90.82%. Experimental results showed that the ensemble model had a high accuracy rate, which provided an idea and explored a approach for diseases of different degrees on apple leaves.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劉斌,徐皓瑋,李承澤,宋鴻利,何東健,張海曦.基于快照集成卷積神經(jīng)網(wǎng)絡(luò)的蘋果葉部病害程度識(shí)別[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(6):286-294. LIU Bin, XU Haowei, LI Chengze, SONG Hongli, HE Dongjian, ZHANG Haixi. Apple Leaf Disease Identification Method Based on Snapshot Ensemble CNN[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(6):286-294.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-07-12
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-08-08
  • 出版日期:
文章二維碼