亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于融合注意力機(jī)制的蘋果品種分類方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

天津市自然科學(xué)基金項目(18JCQNJC70600)和天津市高等學(xué)校創(chuàng)新團(tuán)隊培養(yǎng)計劃項目(TD13-5034)


Apple Variety Classification Method Based on Fusion Attention Mechanism
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    不同品種蘋果之間往往存在較大的價格差異,為了防止從采購到銷售過程中因蘋果品種分類不當(dāng)產(chǎn)生經(jīng)濟(jì)損失,提出了一種基于融合注意力機(jī)制的自動識別和分類模型EBm-Net(針對蘋果類型)。該模型通過融合通道注意力和空間注意力機(jī)制充分提取了蘋果表面的形狀輪廓特征和顏色紋理特征,從而進(jìn)一步增加蘋果類型之間的特征距離。同時,從特征圖和類別概率統(tǒng)計圖2方面證明了EBm-Net在蘋果品種分類方法上的有效性。實驗結(jié)果表明,EBm-Net網(wǎng)絡(luò)模型在紅富士、喬納金、秦冠、小國光、金冠、澳洲青蘋、嘎啦上的分類準(zhǔn)確率分別為96.25%、96.25%、100%、92.50%、98.75%、100%和93.75%,7種蘋果類型的總體分類準(zhǔn)確率高達(dá)96.78%。因此,將視覺圖像與深度學(xué)習(xí)相結(jié)合對蘋果品種進(jìn)行分類和識別是可行的,為蘋果品種的實時檢測提供了一種新的方法。

    Abstract:

    Each apple is unique but can be classified into an “apple type” via features such as color, contour, texture, and other physical characteristics. Many apple growers classify apple types manually, often at great expense due to misclassification errors, low efficiency, inconsistent results, and high labor costs. Therefore, a real-time apple type detection and classification system is needed to prevent these complications, which typically happen in the period between sourcing and sales. To automate apple type classification, EBm-Net, an automatic identification and classification model was proposed based on a dual-branch structure network. The model fully extracted the contour, color, and texture characteristics of an apple’s surface by fusing channel attention and spatial attention mechanisms; this was done to further increase the feature difference between apple types by using a distance metric. The effectiveness of the EBm-Net apple type classification method was validated by analyzing its feature map and category probability statistics map. Experimental results showed that the classification accuracy of the EBm-Net model applied to Red Fuji, Jonagold, Qin Guan, Xiao Guoguang, Golden Crown, Granny Smith, and Gala apples was 96.25%, 96.25%, 100%, 92.50%, 98.75%, 100% and 93.75%, respectively; the overall classification accuracy of the seven apple types was as high as 96.78%. Therefore, it was feasible to use visual images combined with deep learning to classify and recognize apple type, which provided a method for real-time autonomous apple type classification.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

耿磊,黃亞龍,郭永敏.基于融合注意力機(jī)制的蘋果品種分類方法[J].農(nóng)業(yè)機(jī)械學(xué)報,2022,53(6):304-310,369. GENG Lei, HUANG Yalong, GUO Yongmin. Apple Variety Classification Method Based on Fusion Attention Mechanism[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(6):304-310,369.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-07-01
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-09-15
  • 出版日期:
文章二維碼