亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于改進(jìn)VGGNet的羊個(gè)體疼痛識(shí)別方法
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(31660678)和內(nèi)蒙古自治區(qū)科技重大專項(xiàng)(2021ZD0019-4)


Individual Pain Recognition Method of Sheep Based on Improved VGGNet
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)目前人工識(shí)別羊個(gè)體疼痛過(guò)程中存在的經(jīng)驗(yàn)要求高、識(shí)別準(zhǔn)確率低、消耗成本高、延誤疾病治療等問(wèn)題,引入當(dāng)前主流圖像分類網(wǎng)絡(luò)VGGNet(Visual geometry group network)對(duì)有疼痛和無(wú)疼痛的羊臉表情進(jìn)行識(shí)別,提出一種基于改進(jìn)VGGNet的羊臉痛苦表情識(shí)別算法,改進(jìn)后的網(wǎng)絡(luò)為STVGGNet(Spatial transformer visual geometry group network)。該算法將空間變換網(wǎng)絡(luò)引入VGGNet,通過(guò)空間變換網(wǎng)絡(luò)增強(qiáng)對(duì)羊臉痛苦表情特征區(qū)域的關(guān)注程度,提高對(duì)羊臉痛苦表情的識(shí)別準(zhǔn)確率。本文對(duì)原有的羊臉表情數(shù)據(jù)集進(jìn)行了擴(kuò)充,新增887幅羊臉表情圖像。但是新的數(shù)據(jù)集圖像數(shù)量仍然較少,所以本文利用ImageNet數(shù)據(jù)集進(jìn)行遷移學(xué)習(xí),微調(diào)后用來(lái)自動(dòng)分類有痛苦和無(wú)痛苦的羊臉表情。對(duì)羊面部表情數(shù)據(jù)集的實(shí)驗(yàn)結(jié)果表明,使用STVGGNet實(shí)現(xiàn)的最佳訓(xùn)練準(zhǔn)確率為99.95%,最佳驗(yàn)證準(zhǔn)確率為96.06%,分別比VGGNet高0.15、0.99個(gè)百分點(diǎn)。因此,本文采用的模型在羊臉痛苦表情識(shí)別中有非常好的識(shí)別效果并且具有較強(qiáng)的魯棒性,為畜牧業(yè)中羊的疾病檢測(cè)智能化發(fā)展提供了技術(shù)支撐。

    Abstract:

    In order to solve the problems with manual assessment of individual sheep’s pain, which includes the requirement for a high level of human experience on the subject matter, a lack of pain recognition accuracy, and extended delay for the treatment for sheep, spatial transformer visual geometry group network (STVGGNet) was proposed as an improved model to the current mainstream deep learning model visual geometry group network (VGGNet). The STVGGNet algorithm introduced the spatial transformer networks and increased the area of analysis and in return improved the level of recognition of a sheep’s facial expression with regards of pain. Additional 887 images were added to the pre-existing dataset of sheep’s facial expression images. However, because the new image dataset remained low in quantity, the model also utilized ImageNet for transfer learning and fine-tuning classification between painful and non-painful sheep’s facial expressions. The experimental results showed that the best performance accuracy of STVGGNet in training stood at 99.95% with the best validation results upwards of 99.06% vs the VGGNet model which yielded 99.80% and 95.07% respectively. Therefore, with STVGGNet’s improved accuracy and strong robustness to classify pain within a sheep’s facial expression, it provided technical support for the intelligent development of sheep disease detection in animal husbandry.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

韓丁,王斌,王亮,侯越誠(chéng),田虎強(qiáng),張世龍.基于改進(jìn)VGGNet的羊個(gè)體疼痛識(shí)別方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(6):311-317. HAN Ding, WANG Bin, WANG Liang, HOU Yuecheng, TIAN Huqiang, ZHANG Shilong. Individual Pain Recognition Method of Sheep Based on Improved VGGNet[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(6):311-317.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-07-14
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-08-16
  • 出版日期:
文章二維碼