亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于改進(jìn)LinkNet的寒旱區(qū)遙感圖像河流識別方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(61864025)、2021年隴原青年創(chuàng)新創(chuàng)業(yè)人才(團(tuán)隊)項目、甘肅省高等學(xué)校青年博士基金項目(2021QB-49)、〖JP2〗甘肅省高校大學(xué)生就業(yè)創(chuàng)業(yè)能力提升工程項目(2021-35)、智能化隧道監(jiān)理機(jī)器人研究項目(中鐵科研院(科研)字2020-KJ016-Z016-A2)和四電BIM工程與智能應(yīng)用鐵路行業(yè)重點(diǎn)實驗室開放項目(BIMKF-2021-04)


Recognition of Rivers in Remote Sensing Images in Cold and Arid Regions Based on Improved LinkNet
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為解決遙感圖像河流精細(xì)化提取問題,提出一種改進(jìn)LinkNet模型的分割網(wǎng)絡(luò)(AFR-LinkNet)。AFR-LinkNet在LinkNet基礎(chǔ)上引入了殘差通道注意力結(jié)構(gòu)、非對稱卷積模塊以及密集跳躍連接結(jié)構(gòu),并用視覺激活函數(shù)FReLU替換ReLU激活函數(shù)。殘差通道注意力結(jié)構(gòu)可以強(qiáng)化對分割任務(wù)有效的特征,以提高模型的分類能力,得到更多的細(xì)節(jié)信息。利用非對稱卷積模塊進(jìn)行模型壓縮和加速。使用FReLU激活函數(shù)提升網(wǎng)絡(luò)提取遙感圖像河流的精細(xì)空間布局。在寒旱區(qū)河流數(shù)據(jù)集上的實驗結(jié)果表明,AFR-LinkNet網(wǎng)絡(luò)相較于FCN、UNet、ResNet50、LinkNet、DeepLabv3+ 網(wǎng)絡(luò)交并比分別提高了26.4、22.7、17.6、12.0、9.7個百分點(diǎn),像素準(zhǔn)確率分別提高了25.9、22.5、13.2、10.5、7.3個百分點(diǎn);引入非對稱卷積模塊后,交并比提高了5.1個百分點(diǎn),像素準(zhǔn)確率提高了2.9個百分點(diǎn),在此基礎(chǔ)上引入殘差通道注意力結(jié)構(gòu)之后,交并比又提高了2.2個百分點(diǎn),像素準(zhǔn)確率提高了2.3個百分點(diǎn),證明了其對河流細(xì)節(jié)識別效果更好。

    Abstract:

    The extraction of rivers in cold and arid regions is of great significance to the rational utilization of water resources, water conservancy planning and early warning of water disasters. In order to solve the problem of refined river extraction from remote sensing images, a segmentation network (AFR-LinkNet network) was proposed based on the LinkNet model. AFR-LinkNet introduced residual channel attention structure, asymmetric convolution module and dense skip connection structure on the basis of LinkNet, and replaced the original ReLU activation function with visual activation function FReLU. The residual channel attention structure can strengthen the features that were effective for segmentation tasks to improve the classification ability of the model and obtain more detailed information. The asymmetric convolution module was used to compress and accelerate the model. The FReLU activation function boosting network was used to extract fine spatial layout of rivers in remote sensing images. The experimental results on the river dataset in cold and arid regions showed that compared with FCN, UNet, ResNet50, LinkNet, DeepLabv3+ network, the intersection ratio of AFR-LinkNet network was improved by 26.4 percentage points, 22.7 percentage points, 17.6 percentage points, 12.0 percentage points and 9.7 percentage points respectively, the pixel accuracy was increased by 25.9 percentage points, 22.5 percentage points, 13.2 percentage points, 10.5 percentage points and 7.3 percentage points, respectively. After the introduction of the asymmetric convolution module, the intersection ratio was increased by 5.1 percentage points, and the pixel accuracy rate was increased by 2.9 percentage points. On this basis, after introducing the residual channel attention structure, the intersection ratio was improved by 2.2 percentage points, the pixel accuracy rate was improved by 2.3 percentage points, and its performance was better, and the extracted river coherence and details were better preserved. Therefore, AFR-LinkNet algorithm was of great and far-reaching significance for analyzing river distribution, water disaster warning, rational utilization of water resources and agricultural irrigation development in cold and arid regions of China, laying a foundation for the realization of sustainable development in China.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

沈瑜,王海龍,苑玉彬,梁麗,張泓國,王霖.基于改進(jìn)LinkNet的寒旱區(qū)遙感圖像河流識別方法[J].農(nóng)業(yè)機(jī)械學(xué)報,2022,53(7):217-225. SHEN Yu, WANG Hailong, YUAN Yubin, LIANG Li, ZHANG Hongguo, WANG Lin. Recognition of Rivers in Remote Sensing Images in Cold and Arid Regions Based on Improved LinkNet[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(7):217-225.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-03-23
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-07-10
  • 出版日期:
文章二維碼