亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于改進(jìn)YOLO v4的玉米種子外觀品質(zhì)檢測(cè)方法
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金面上項(xiàng)目(32072572)、河北省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(20327403D)、河北省高層次人才項(xiàng)目(E2019100006)和河北農(nóng)業(yè)大學(xué)人才引進(jìn)研究項(xiàng)目(YJ201847)


Corn Seed Appearance Quality Estimation Based on Improved YOLO v4
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)玉米種子在外觀品質(zhì)檢測(cè)中需要快速識(shí)別與定位的需求,提出了一種基于改進(jìn)YOLO v4的目標(biāo)檢測(cè)模型,同時(shí)結(jié)合四通道(RGB+NIR)多光譜圖像,對(duì)玉米種子外觀品質(zhì)進(jìn)行了識(shí)別與分類。為了減少改進(jìn)后模型的參數(shù)量,本文將主干特征提取網(wǎng)絡(luò)替換為輕量級(jí)網(wǎng)絡(luò)MobileNet V1。為了進(jìn)一步提升模型的性能,通過試驗(yàn)研究了空間金字塔池化(Spatial pyramid pooling, SPP)結(jié)構(gòu)在不同位置上對(duì)模型性能的影響,最終選取改進(jìn)YOLO v4-MobileNet V1模型對(duì)玉米種子外觀品質(zhì)進(jìn)行檢測(cè)。試驗(yàn)結(jié)果表明,模型的綜合評(píng)價(jià)指標(biāo)平均F1值和mAP達(dá)到93.09%和98.02%,平均每檢測(cè)1幅圖像耗時(shí)1.85s,平均每檢測(cè)1粒玉米種子耗時(shí)0.088.s,模型參數(shù)量壓縮為原始模型的20%。四通道多光譜圖像的光譜波段可擴(kuò)展到可見光范圍之外,并能夠提取出更具有代表性的特征信息,并且改進(jìn)后的模型具有魯棒性強(qiáng)、實(shí)時(shí)性好、輕量化的優(yōu)點(diǎn),為實(shí)現(xiàn)種子的高通量質(zhì)量檢測(cè)和優(yōu)選分級(jí)提供了參考。

    Abstract:

    Aim to identify and position corn seed, an object detection model based on improved YOLO v4 was proposed. This model combined with multi-spectral images with four channels (RGB+NIR), the appearance quality of corn seeds was identified and classified. In order to reduce the number of parameters in the model, the trunk feature extraction network was replaced with the lightweight network MobileNet V1. To improve the performance of the model, the effect of spatial pyramid pooling (SPP) structure on the model performance was studied. Finally, the improved YOLO v4-MobileNet V1 model was selected to detect the appearance quality of corn seeds. The experimental results showed that the comprehensive evaluation indexes F1 and mAP of the model reached 93.09% and 98.02%, respectively. The average detection time of each image was 1.85s, and the average detection time of each corn seed was 0.088s. And the number of model parameters was compressed to 20% of the original model. The spectral band of four channel multi-spectral image can be extended beyond the visible range. Image can extract more representative feature information. The improved model had the advantages of strong robustness, good real-time performance and lightweight. It can provide a reference for high throughput quality detection and optimal classification of seeds.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

范曉飛,王林柏,劉景艷,周玉宏,張君,索雪松.基于改進(jìn)YOLO v4的玉米種子外觀品質(zhì)檢測(cè)方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(7):226-233. FAN Xiaofei, WANG Linbai, LIU Jingyan, ZHOU Yuhong, ZHANG Jun, SUO Xuesong. Corn Seed Appearance Quality Estimation Based on Improved YOLO v4[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(7):226-233.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-08-02
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-07-10
  • 出版日期:
文章二維碼