亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于Sentinel的時(shí)間序列田塊尺度LAI重建與冬小麥估產(chǎn)
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(42171332、41871336)


Reconstruction of Time Series LAI and Winter Wheat Yield Estimation at Field Scales Based on Sentinel Satellites
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為了進(jìn)行田塊尺度的冬小麥單產(chǎn)估測(cè),以陜西省關(guān)中平原為研究區(qū)域,基于Sentinel-1、Sentinel-2和Sentinel-3衛(wèi)星數(shù)據(jù)反演葉面積指數(shù)(LAI),并利用增強(qiáng)的深度卷積神經(jīng)網(wǎng)絡(luò)融合模型(EDCSTFN)和增強(qiáng)的時(shí)空自適應(yīng)反射率融合模型(ESTARFM)對(duì)Sentinel-1、Sentinel-2和Sentinel-3 LAI進(jìn)行時(shí)空融合,進(jìn)而重建尺度12d的空間分辨率20m LAI并用于冬小麥單產(chǎn)估測(cè)。結(jié)果表明,基于Sentinel-1后向散射系數(shù)和相干性能夠準(zhǔn)確地反演關(guān)中平原冬小麥種植區(qū)的20m空間分辨率LAI,決定系數(shù)(R2)在冬小麥主要生育期可達(dá)0.70以上;相比于基于Sentinel-2和Sentinel-3的ESTARFM模型和EDCSTFN模型(EDCSTFN_S3),基于Sentinel-1和Sentinel-2的EDCSTFN模型(EDCSTFN_S1)可以明顯提高距離參考影像獲取日期較遠(yuǎn)的日期的LAI時(shí)空融合精度,ESTARFM、EDCSTFN_S3和EDCSTFN_S1 3個(gè)模型在5月下旬的融合結(jié)果對(duì)應(yīng)的R2分別為0.53、0.71和0.76;基于時(shí)空融合LAI的冬小麥估產(chǎn)結(jié)果與冬小麥單產(chǎn)數(shù)據(jù)具有良好的相關(guān)性(R2=0.52,P<0.01),估產(chǎn)結(jié)果的均方根誤差為358.25kg/hm2,歸一化均方根誤差為19%,平均相對(duì)誤差為7.34%,并顯示了豐富的田塊尺度冬小麥單產(chǎn)分布細(xì)節(jié)特征,展現(xiàn)了進(jìn)行田塊尺度冬小麥精確估產(chǎn)的潛力。

    Abstract:

    Time-series crop growth monitoring at field scales is very important for crop management and yield estimation. However, the spatial resolutions (250~1000 m) of current satellite sensors with high temporal resolutions are too coarse for areas with complex and diverse land-use types, such as the Guanzhong Plain of Shaanxi Province, which causes great uncertainties in crop yield estimation results. To estimate the winter wheat yield at field scales, a study was carried out on the Guanzhong Plain. The enhanced deep convolutional spatiotemporal fusion network (EDCSTFN) model and enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM) were used to fuse the leaf area index (LAI) retrieved from Sentinel-1, Sentinel-2 and Sentinel-3 imagery, thereby reconstructing the LAI imagery with a 20m spatial resolution at 12 day interval. Finally, the reconstructed LAI imagery were used for the winter wheat yield estimation at field scales. The results showed that the LAI imagery with a 20m spatial resolution in the winter wheat planting area of Guanzhong Plain can be accurately retrieved based on the backscatter coefficient and coherence derived from Sentinel-1 data, and the coefficient of determination (R2) in March and April were larger than 0.70. Compared with the ESTARFM and EDCSTFN models based on Sentinel-2 and Sentinel-3 (EDCSTFN_S3), the EDCSTFN model based on Sentinel-1 and Sentinel-2 (EDCSTFN_S1) can significantly improve the accuracy of LAI spatiotemporal fusion results on the dates far from the reference dates (R2 values for ESTARFM, EDCSTFN_S3 and EDCSTFN_S1 model in late May were 0.53, 0.71 and 0.76, respectively). The winter wheat yield estimation results based on the spatiotemporal fused LAI had a good correlation with the winter wheat yield data (R2=0.52, P<0.01), the root mean square error of the yield estimation results was 358.25kg/hm2, the normalized root mean square error was 19% and the average relative error was 7.34%. In addition, the yield estimation results showed more spatial distribution details of winter wheat yield at field scales, thereby indicating the potential for accurate winter wheat yield estimation at field scales.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

周西嘉,張悅,王鵬新,張樹(shù)譽(yù),李紅梅,田惠仁.基于Sentinel的時(shí)間序列田塊尺度LAI重建與冬小麥估產(chǎn)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(8):173-185. ZHOU Xijia, ZHANG Yue, WANG Pengxin, ZHANG Shuyu, LI Hongmei, TIAN Huiren. Reconstruction of Time Series LAI and Winter Wheat Yield Estimation at Field Scales Based on Sentinel Satellites[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(8):173-185.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-09-01
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-10-08
  • 出版日期:
文章二維碼