亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于信息熵特征選擇的小麥冠層葉綠素含量估測方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

河北省重點研發(fā)計劃項目(41130100862301002)和河北省高等學(xué)校科學(xué)技術(shù)研究項目(QN2021409)


Estimation Method of Wheat Canopy Chlorophyll Based on Information Entropy Feature Selection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為運用圖像顏色特征估測作物的葉綠素含量,以自然環(huán)境下的小麥冠層圖像為研究對象,提出一種基于熵權(quán)法的顏色特征選擇方法,并應(yīng)用機器學(xué)習(xí)方法建立小麥冠層葉綠素含量估測模型。熵權(quán)法通過信息熵來衡量顏色特征指標權(quán)重,實現(xiàn)冠層圖像特征排序,機器學(xué)習(xí)方法選用多元線性回歸(Multiple linear regression, MLR)、嶺回歸(Ridge regression, RR)和支持向量回歸模型(Support vector regression, SVR)估測小麥冠層葉綠素含量。試驗結(jié)果表明,與皮爾遜相關(guān)系數(shù)法和主成分分析法選取的特征集進行對比,熵權(quán)法得到a*、R-G-B、R-G、(a*+b*)/L、a*/b*、(R-G)/(R+G+B)、(R-B)/(R+B)、H/S、(R-G)/(R+G)等9個特征組成的特征集,可以利用較少的特征指標達到最優(yōu)的預(yù)測效果。在選取相同特征指標參數(shù)的情況下,SVR的預(yù)測能力優(yōu)于其它模型,其R2和RMSE的平均值分別為0.80、1.89,相比于MLR和RR模型R2分別提升2.8%、1.1%,RMSE分別下降0.13和0.05。將基于熵權(quán)法建立的SVR模型應(yīng)用到2021年采集的小麥冠層圖像數(shù)據(jù),結(jié)果表明模型具有很好的穩(wěn)定性。

    Abstract:

    Chlorophyll is an important indicator reflecting the nitrogen nutrition status of crops, and its content is closely related to crop growth and development, photosynthesis capacity and crop yield. With the increasing maturity of image processing technology, choosing image color features to estimate the chlorophyll content of crops has become an important technical means. Taking the wheat canopy image in the natural environment as the research object, a color feature selection method was proposed based on the entropy weight method, and machine learning methods were applied to establish a wheat canopy chlorophyll content estimation model. The entropy method used information entropy to measure the weight of color feature indicators to achieve the canopy image feature ranking. The machine learning method used multiple linear regression (MLR), ridge regression (RR) and support vector regression models (SVR) to estimate the chlorophyll content of wheat canopy. The experimental results showed that compared with the feature set selected by the Pearson correlation coefficient method and principal component analysis, the entropy weight method obtained a*, R-B-G, R-G, (a*+b*)/L, a*/b*, (R-G)/(R +G+B), (R-B)/(R+B), H/S, (R-G)/(R+G) and other nine features. The feature sets can use fewer feature indicators to achieve the best prediction effect. In the case of selecting the same characteristic index parameters, the predictive ability of SVR was better than that of other models, and the average values of R2 and RMSE were 0.80 and 1.89,compared with MLR and RR models, its R2was improved by 2.8% and 1.1%, RMSE was decreased by 0.13 and 0.05,respectively.The SVR model based on the entropy weight method was applied to the wheat canopy image data collected in 2021, and the results showed that the model had good stability. The above research results showed that image processing technology and machine learning methods had very good application value in the estimation of chlorophyll content of crops, providing an important theoretical basis for imagebased estimation of chlorophyll content of field crops.

    參考文獻
    相似文獻
    引證文獻
引用本文

苑迎春,周毅,宋宇斐,徐錚,王克儉.基于信息熵特征選擇的小麥冠層葉綠素含量估測方法[J].農(nóng)業(yè)機械學(xué)報,2022,53(8):186-195. YUAN Yingchun, ZHOU Yi, SONG Yufei, XU Zheng, WANG Kejian. Estimation Method of Wheat Canopy Chlorophyll Based on Information Entropy Feature Selection[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(8):186-195.

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-08-31
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-11-17
  • 出版日期:
文章二維碼